Procházet zdrojové kódy

Particle counting and ADC measuring

Aleksandr Nagaev před 3 roky
rodič
revize
42c6aba557

Rozdílová data souboru nebyla zobrazena, protože soubor je příliš velký
+ 0 - 0
stm32workspace/dosimeter-fw/.mxproject


+ 8 - 0
stm32workspace/dosimeter-fw/Core/Inc/main.h

@@ -57,6 +57,14 @@ void Error_Handler(void);
 void LED_TurnOn(uint8_t);
 void LED_TurnOff(uint8_t);
 void LED_Toggle(uint8_t);
+
+static inline void ResetPeakDetector() { HAL_GPIO_WritePin(GPIOB, GPIO_PIN_2, GPIO_PIN_SET); }
+static inline void SetPeakDetector() { HAL_GPIO_WritePin(GPIOB, GPIO_PIN_2, GPIO_PIN_RESET); }
+static inline void DisableHV() { HAL_GPIO_WritePin(GPIOC, GPIO_PIN_1, GPIO_PIN_RESET); }
+static inline void EnableHV() { HAL_GPIO_WritePin(GPIOC, GPIO_PIN_1, GPIO_PIN_SET); }
+static inline void DisableBatSupply() { HAL_GPIO_WritePin(GPIOC, GPIO_PIN_0, GPIO_PIN_RESET); }
+static inline void EnableBatSupply() { HAL_GPIO_WritePin(GPIOC, GPIO_PIN_0, GPIO_PIN_SET); }
+
 /* USER CODE END EFP */
 
 /* Private defines -----------------------------------------------------------*/

+ 2 - 2
stm32workspace/dosimeter-fw/Core/Inc/stm32f4xx_hal_conf.h

@@ -39,7 +39,7 @@
   #define HAL_ADC_MODULE_ENABLED
 /* #define HAL_CRYP_MODULE_ENABLED   */
 /* #define HAL_CAN_MODULE_ENABLED   */
-/* #define HAL_CRC_MODULE_ENABLED   */
+#define HAL_CRC_MODULE_ENABLED
 /* #define HAL_CAN_LEGACY_MODULE_ENABLED   */
 /* #define HAL_CRYP_MODULE_ENABLED   */
 #define HAL_DAC_MODULE_ENABLED
@@ -63,7 +63,7 @@
 /* #define HAL_MMC_MODULE_ENABLED   */
 #define HAL_SPI_MODULE_ENABLED
 #define HAL_TIM_MODULE_ENABLED
-#define HAL_UART_MODULE_ENABLED
+/* #define HAL_UART_MODULE_ENABLED   */
 /* #define HAL_USART_MODULE_ENABLED   */
 /* #define HAL_IRDA_MODULE_ENABLED   */
 /* #define HAL_SMARTCARD_MODULE_ENABLED   */

+ 3 - 0
stm32workspace/dosimeter-fw/Core/Inc/stm32f4xx_it.h

@@ -59,6 +59,9 @@ void EXTI1_IRQHandler(void);
 void ADC_IRQHandler(void);
 void EXTI9_5_IRQHandler(void);
 void TIM3_IRQHandler(void);
+void TIM4_IRQHandler(void);
+void TIM6_DAC_IRQHandler(void);
+void DMA2_Stream0_IRQHandler(void);
 void OTG_FS_IRQHandler(void);
 /* USER CODE BEGIN EFP */
 

+ 171 - 56
stm32workspace/dosimeter-fw/Core/Src/main.c

@@ -23,7 +23,8 @@
 
 /* Private includes ----------------------------------------------------------*/
 /* USER CODE BEGIN Includes */
-
+#include "usbd_cdc_if.h"
+#include <stdio.h>
 /* USER CODE END Includes */
 
 /* Private typedef -----------------------------------------------------------*/
@@ -43,6 +44,9 @@
 /* Private variables ---------------------------------------------------------*/
 ADC_HandleTypeDef hadc1;
 ADC_HandleTypeDef hadc2;
+DMA_HandleTypeDef hdma_adc1;
+
+CRC_HandleTypeDef hcrc;
 
 DAC_HandleTypeDef hdac;
 
@@ -55,22 +59,24 @@ SPI_HandleTypeDef hspi2;
 
 TIM_HandleTypeDef htim2;
 TIM_HandleTypeDef htim3;
-
-UART_HandleTypeDef huart1;
+TIM_HandleTypeDef htim4;
 
 /* USER CODE BEGIN PV */
-struct FlagsStr {
+volatile struct FlagsStr {
   uint8_t Adc1_CC;
   uint8_t Adc2_CC;
   uint8_t Tim3_PE;
 } Flags;
 
+uint32_t raw_adc[4];
 uint32_t VccVal_mV;
+volatile uint32_t ticks;
 /* USER CODE END PV */
 
 /* Private function prototypes -----------------------------------------------*/
 void SystemClock_Config(void);
 static void MX_GPIO_Init(void);
+static void MX_DMA_Init(void);
 static void MX_ADC1_Init(void);
 static void MX_ADC2_Init(void);
 static void MX_DAC_Init(void);
@@ -78,21 +84,30 @@ static void MX_I2C1_Init(void);
 static void MX_RTC_Init(void);
 static void MX_SPI1_Init(void);
 static void MX_SPI2_Init(void);
-static void MX_USART1_UART_Init(void);
 static void MX_TIM2_Init(void);
 static void MX_TIM3_Init(void);
+static void MX_CRC_Init(void);
+static void MX_TIM4_Init(void);
 /* USER CODE BEGIN PFP */
 
 /* USER CODE END PFP */
 
 /* Private user code ---------------------------------------------------------*/
 /* USER CODE BEGIN 0 */
+
+int _write(int fd, char* ptr, int len)
+{
+    CDC_Transmit_FS((uint8_t*)ptr, len);
+    return len;
+}
+
 void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin)
 {
   switch(GPIO_Pin)
   {
     case GPIO_PIN_1:
-      LED_Toggle(LED_BLUE);
+      HAL_TIM_Base_Start_IT(&htim4);
+      LED_TurnOn(LED_BLUE);
       if(HAL_ADC_GetState(&hadc2) & HAL_ADC_STATE_READY)
         HAL_ADC_Start_IT(&hadc2);
       break;
@@ -113,19 +128,31 @@ void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef* hadc)
 {
   if(hadc->Instance == ADC1)
   {
+    HAL_ADC_Stop_DMA(hadc);
     Flags.Adc1_CC = 1;
   }
 
   if(hadc->Instance == ADC2)
   {
+    HAL_ADC_Stop_IT(hadc);
     Flags.Adc2_CC = 1;
+    ResetPeakDetector();
   }
 }
 
 void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef* htim)
 {
   if(htim->Instance == TIM3)
+  {
     Flags.Tim3_PE = 1;
+    ticks++;
+  }
+
+  if(htim->Instance == TIM4)
+  {
+    LED_TurnOff(LED_BLUE);
+    HAL_TIM_Base_Stop_IT(&htim4);
+  }
 }
 
 void LED_TurnOn(uint8_t color)
@@ -134,6 +161,7 @@ void LED_TurnOn(uint8_t color)
   {
     case LED_BLUE:
       HAL_GPIO_WritePin(GPIOB, GPIO_PIN_6, GPIO_PIN_SET);
+      HAL_GPIO_TogglePin(GPIOA, GPIO_PIN_10); // !!! DEBUG !!!
       break;
     case LED_GREEN:
       HAL_GPIO_WritePin(GPIOB, GPIO_PIN_7, GPIO_PIN_SET);
@@ -176,13 +204,24 @@ void LED_Toggle(uint8_t color)
   }
 }
 
-float LM73_GetTemp()
+HAL_StatusTypeDef LM73_GetTemp(uint32_t *temp)
 {
-  uint8_t temp[2] = { 0, 0 };
-  HAL_I2C_Master_Transmit(&hi2c1, LM73_I2C_ADDR, &temp[0], 1, 10);
-  HAL_I2C_Master_Receive(&hi2c1, LM73_I2C_ADDR, &temp[0], 2, 10);
-  uint16_t temp_result = (((uint16_t)temp[0] << 8) | (uint16_t)temp[1]) >> 5;
-  return ((float)temp_result / 4.0);
+  uint8_t rbytes[2] = { 0, 0 };
+  HAL_StatusTypeDef status;
+  status = HAL_I2C_Master_Transmit(&hi2c1, LM73_I2C_ADDR, &rbytes[0], 1, 10);
+  if(status == HAL_OK)
+  {
+    status = HAL_I2C_Master_Receive(&hi2c1, LM73_I2C_ADDR, &rbytes[0], 2, 10);
+  }
+  if(status == HAL_OK)
+  {
+    *temp = ((((uint16_t)rbytes[0] << 8) | (uint16_t)rbytes[1]) >> 5) * 25UL;
+    return HAL_OK;
+  }
+  else
+  {
+    return status;
+  }
 }
 
 void SetSIPMVoltage(uint32_t voltage)
@@ -207,7 +246,10 @@ void SetThresholdVoltage(uint32_t voltage)
 int main(void)
 {
   /* USER CODE BEGIN 1 */
-
+  char tempstr[32];
+  uint8_t counts = 0;
+  uint8_t spectrum[4096];
+  uint32_t temperature;
   /* USER CODE END 1 */
 
   /* MCU Configuration--------------------------------------------------------*/
@@ -228,6 +270,7 @@ int main(void)
 
   /* Initialize all configured peripherals */
   MX_GPIO_Init();
+  MX_DMA_Init();
   MX_ADC1_Init();
   MX_ADC2_Init();
   MX_DAC_Init();
@@ -235,10 +278,11 @@ int main(void)
   MX_RTC_Init();
   MX_SPI1_Init();
   MX_SPI2_Init();
-  MX_USART1_UART_Init();
   MX_USB_DEVICE_Init();
   MX_TIM2_Init();
   MX_TIM3_Init();
+  MX_CRC_Init();
+  MX_TIM4_Init();
   /* USER CODE BEGIN 2 */
   ST7735_Init();
   ST7735_FillScreen(ST7735_BLACK);
@@ -250,46 +294,56 @@ int main(void)
   HAL_TIM_Base_Start_IT(&htim3);
   HAL_DAC_Start(&hdac, DAC_CHANNEL_1);
   HAL_DAC_Start(&hdac, DAC_CHANNEL_2);
-  HAL_ADC_Start_IT(&hadc1);
 
-  HAL_GPIO_WritePin(GPIOC, GPIO_PIN_1, GPIO_PIN_SET);
+  EnableHV();
 
-  char tempstr[32];
-  uint8_t counts = 0;
-  uint8_t spectrum[4096];
+  HAL_Delay(10);
+  HAL_ADC_Start_DMA(&hadc1, raw_adc, 1);
+  while(Flags.Adc1_CC == 0);
+  HAL_ADC_Start_DMA(&hadc1, raw_adc, 1);
+  VccVal_mV = *VREFINT_CAL_ADDR * VREFINT_CAL_VREF / raw_adc[0];
+  SetSIPMVoltage(SIPM_VBR + 2350);
+  SetThresholdVoltage(400);
 
   while (1)
   {
-    sprintf(tempstr, "Temp: - %06.2f -", LM73_GetTemp());
-
     if(Flags.Adc1_CC)
     {
       Flags.Adc1_CC = 0;
-      VccVal_mV = *VREFINT_CAL_ADDR * VREFINT_CAL_VREF / HAL_ADC_GetValue(&hadc1);
-      SetSIPMVoltage(SIPM_VBR + 2500);
-      SetThresholdVoltage(100);
-      HAL_ADC_Start_IT(&hadc1);
+      VccVal_mV = *VREFINT_CAL_ADDR * VREFINT_CAL_VREF / raw_adc[0];
+      HAL_ADC_Start_DMA(&hadc1, raw_adc, 1);
     }
 
     if(Flags.Adc2_CC)
     {
       Flags.Adc2_CC = 0;
-      spectrum[HAL_ADC_GetValue(&hadc2)]++;
+      uint32_t val = HAL_ADC_GetValue(&hadc2);
+      spectrum[val]++;
       counts++;
+      SetPeakDetector();
+      printf("%lu\r\n", val);
     }
 
     if(Flags.Tim3_PE)
     {
       Flags.Tim3_PE = 0;
+      LM73_GetTemp(&temperature);
+      sprintf(tempstr, "Temp: - %06.2f -", (float)temperature / 100.0);
+
       ST7735_WriteString(0, 10, tempstr, Font_7x10, ST7735_CYAN, ST7735_BLACK);
       sprintf(tempstr, "Vcc:  - %04.2f -", (float)VccVal_mV / 1000.0);
       ST7735_WriteString(0, 20, tempstr, Font_7x10, ST7735_RED, ST7735_BLACK);
 
-      sprintf(tempstr, "- %.3u -", counts);
-      ST7735_WriteString(0, 50, tempstr, Font_16x26, ST7735_RED, ST7735_BLACK);
+      if(ticks % 10 == 0)
+      {
+        sprintf(tempstr, "- %.3u -", counts);
+        ST7735_WriteString(0, 50, tempstr, Font_16x26, ST7735_RED, ST7735_BLACK);
+        sprintf(tempstr, "- %lX -", HAL_ADC_GetState(&hadc2));
+        ST7735_WriteString(0, 80, tempstr, Font_7x10, ST7735_RED, ST7735_BLACK);
+        counts = 0;
+      }
     }
 
-    //HAL_Delay(100);
 
     /* USER CODE END WHILE */
 
@@ -443,6 +497,32 @@ static void MX_ADC2_Init(void)
 
 }
 
+/**
+  * @brief CRC Initialization Function
+  * @param None
+  * @retval None
+  */
+static void MX_CRC_Init(void)
+{
+
+  /* USER CODE BEGIN CRC_Init 0 */
+
+  /* USER CODE END CRC_Init 0 */
+
+  /* USER CODE BEGIN CRC_Init 1 */
+
+  /* USER CODE END CRC_Init 1 */
+  hcrc.Instance = CRC;
+  if (HAL_CRC_Init(&hcrc) != HAL_OK)
+  {
+    Error_Handler();
+  }
+  /* USER CODE BEGIN CRC_Init 2 */
+
+  /* USER CODE END CRC_Init 2 */
+
+}
+
 /**
   * @brief DAC Initialization Function
   * @param None
@@ -680,7 +760,7 @@ static void MX_TIM2_Init(void)
   htim2.Instance = TIM2;
   htim2.Init.Prescaler = 0;
   htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
-  htim2.Init.Period = 4294967295;
+  htim2.Init.Period = 100;
   htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
   htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
   if (HAL_TIM_Base_Init(&htim2) != HAL_OK)
@@ -696,7 +776,7 @@ static void MX_TIM2_Init(void)
   {
     Error_Handler();
   }
-  sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
+  sMasterConfig.MasterOutputTrigger = TIM_TRGO_UPDATE;
   sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
   if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK)
   {
@@ -727,9 +807,9 @@ static void MX_TIM3_Init(void)
 
   /* USER CODE END TIM3_Init 1 */
   htim3.Instance = TIM3;
-  htim3.Init.Prescaler = 1000;
+  htim3.Init.Prescaler = 8000;
   htim3.Init.CounterMode = TIM_COUNTERMODE_DOWN;
-  htim3.Init.Period = 8000;
+  htim3.Init.Period = 1000;
   htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
   htim3.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE;
   if (HAL_TIM_Base_Init(&htim3) != HAL_OK)
@@ -741,7 +821,7 @@ static void MX_TIM3_Init(void)
   {
     Error_Handler();
   }
-  sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
+  sMasterConfig.MasterOutputTrigger = TIM_TRGO_UPDATE;
   sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
   if (HAL_TIMEx_MasterConfigSynchronization(&htim3, &sMasterConfig) != HAL_OK)
   {
@@ -754,35 +834,67 @@ static void MX_TIM3_Init(void)
 }
 
 /**
-  * @brief USART1 Initialization Function
+  * @brief TIM4 Initialization Function
   * @param None
   * @retval None
   */
-static void MX_USART1_UART_Init(void)
+static void MX_TIM4_Init(void)
 {
 
-  /* USER CODE BEGIN USART1_Init 0 */
+  /* USER CODE BEGIN TIM4_Init 0 */
 
-  /* USER CODE END USART1_Init 0 */
+  /* USER CODE END TIM4_Init 0 */
 
-  /* USER CODE BEGIN USART1_Init 1 */
+  TIM_ClockConfigTypeDef sClockSourceConfig = {0};
+  TIM_MasterConfigTypeDef sMasterConfig = {0};
 
-  /* USER CODE END USART1_Init 1 */
-  huart1.Instance = USART1;
-  huart1.Init.BaudRate = 115200;
-  huart1.Init.WordLength = UART_WORDLENGTH_8B;
-  huart1.Init.StopBits = UART_STOPBITS_1;
-  huart1.Init.Parity = UART_PARITY_NONE;
-  huart1.Init.Mode = UART_MODE_TX_RX;
-  huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
-  huart1.Init.OverSampling = UART_OVERSAMPLING_16;
-  if (HAL_UART_Init(&huart1) != HAL_OK)
+  /* USER CODE BEGIN TIM4_Init 1 */
+
+  /* USER CODE END TIM4_Init 1 */
+  htim4.Instance = TIM4;
+  htim4.Init.Prescaler = 4000;
+  htim4.Init.CounterMode = TIM_COUNTERMODE_DOWN;
+  htim4.Init.Period = 1000;
+  htim4.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
+  htim4.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE;
+  if (HAL_TIM_Base_Init(&htim4) != HAL_OK)
+  {
+    Error_Handler();
+  }
+  sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
+  if (HAL_TIM_ConfigClockSource(&htim4, &sClockSourceConfig) != HAL_OK)
   {
     Error_Handler();
   }
-  /* USER CODE BEGIN USART1_Init 2 */
+  if (HAL_TIM_OnePulse_Init(&htim4, TIM_OPMODE_SINGLE) != HAL_OK)
+  {
+    Error_Handler();
+  }
+  sMasterConfig.MasterOutputTrigger = TIM_TRGO_UPDATE;
+  sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
+  if (HAL_TIMEx_MasterConfigSynchronization(&htim4, &sMasterConfig) != HAL_OK)
+  {
+    Error_Handler();
+  }
+  /* USER CODE BEGIN TIM4_Init 2 */
+
+  /* USER CODE END TIM4_Init 2 */
+
+}
+
+/**
+  * Enable DMA controller clock
+  */
+static void MX_DMA_Init(void)
+{
+
+  /* DMA controller clock enable */
+  __HAL_RCC_DMA2_CLK_ENABLE();
 
-  /* USER CODE END USART1_Init 2 */
+  /* DMA interrupt init */
+  /* DMA2_Stream0_IRQn interrupt configuration */
+  HAL_NVIC_SetPriority(DMA2_Stream0_IRQn, 0, 0);
+  HAL_NVIC_EnableIRQ(DMA2_Stream0_IRQn);
 
 }
 
@@ -803,15 +915,18 @@ static void MX_GPIO_Init(void)
   __HAL_RCC_GPIOD_CLK_ENABLE();
 
   /*Configure GPIO pin Output Level */
-  HAL_GPIO_WritePin(GPIOC, GPIO_PIN_13|GPIO_PIN_0|GPIO_PIN_1|GPIO_PIN_3
-                          |GPIO_PIN_10|GPIO_PIN_11|GPIO_PIN_12, GPIO_PIN_RESET);
+  HAL_GPIO_WritePin(GPIOC, GPIO_PIN_13|GPIO_PIN_1|GPIO_PIN_3|GPIO_PIN_10
+                          |GPIO_PIN_11|GPIO_PIN_12, GPIO_PIN_RESET);
+
+  /*Configure GPIO pin Output Level */
+  HAL_GPIO_WritePin(GPIOC, GPIO_PIN_0, GPIO_PIN_SET);
 
   /*Configure GPIO pin Output Level */
   HAL_GPIO_WritePin(GPIOB, GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_10|GPIO_PIN_12
                           |GPIO_PIN_6|GPIO_PIN_7, GPIO_PIN_RESET);
 
   /*Configure GPIO pin Output Level */
-  HAL_GPIO_WritePin(GPIOA, GPIO_PIN_15, GPIO_PIN_RESET);
+  HAL_GPIO_WritePin(GPIOA, GPIO_PIN_10|GPIO_PIN_15, GPIO_PIN_RESET);
 
   /*Configure GPIO pin Output Level */
   HAL_GPIO_WritePin(GPIOD, GPIO_PIN_2, GPIO_PIN_RESET);
@@ -864,8 +979,8 @@ static void MX_GPIO_Init(void)
   GPIO_InitStruct.Pull = GPIO_PULLUP;
   HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
 
-  /*Configure GPIO pin : PA15 */
-  GPIO_InitStruct.Pin = GPIO_PIN_15;
+  /*Configure GPIO pins : PA10 PA15 */
+  GPIO_InitStruct.Pin = GPIO_PIN_10|GPIO_PIN_15;
   GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
   GPIO_InitStruct.Pull = GPIO_NOPULL;
   GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;

+ 95 - 59
stm32workspace/dosimeter-fw/Core/Src/stm32f4xx_hal_msp.c

@@ -24,6 +24,7 @@
 /* USER CODE BEGIN Includes */
 
 /* USER CODE END Includes */
+extern DMA_HandleTypeDef hdma_adc1;
 
 /* Private typedef -----------------------------------------------------------*/
 /* USER CODE BEGIN TD */
@@ -93,6 +94,26 @@ void HAL_ADC_MspInit(ADC_HandleTypeDef* hadc)
   /* USER CODE END ADC1_MspInit 0 */
     /* Peripheral clock enable */
     __HAL_RCC_ADC1_CLK_ENABLE();
+
+    /* ADC1 DMA Init */
+    /* ADC1 Init */
+    hdma_adc1.Instance = DMA2_Stream0;
+    hdma_adc1.Init.Channel = DMA_CHANNEL_0;
+    hdma_adc1.Init.Direction = DMA_PERIPH_TO_MEMORY;
+    hdma_adc1.Init.PeriphInc = DMA_PINC_DISABLE;
+    hdma_adc1.Init.MemInc = DMA_MINC_ENABLE;
+    hdma_adc1.Init.PeriphDataAlignment = DMA_PDATAALIGN_WORD;
+    hdma_adc1.Init.MemDataAlignment = DMA_MDATAALIGN_WORD;
+    hdma_adc1.Init.Mode = DMA_NORMAL;
+    hdma_adc1.Init.Priority = DMA_PRIORITY_LOW;
+    hdma_adc1.Init.FIFOMode = DMA_FIFOMODE_DISABLE;
+    if (HAL_DMA_Init(&hdma_adc1) != HAL_OK)
+    {
+      Error_Handler();
+    }
+
+    __HAL_LINKDMA(hadc,DMA_Handle,hdma_adc1);
+
     /* ADC1 interrupt Init */
     HAL_NVIC_SetPriority(ADC_IRQn, 0, 0);
     HAL_NVIC_EnableIRQ(ADC_IRQn);
@@ -143,6 +164,9 @@ void HAL_ADC_MspDeInit(ADC_HandleTypeDef* hadc)
     /* Peripheral clock disable */
     __HAL_RCC_ADC1_CLK_DISABLE();
 
+    /* ADC1 DMA DeInit */
+    HAL_DMA_DeInit(hadc->DMA_Handle);
+
     /* ADC1 interrupt DeInit */
   /* USER CODE BEGIN ADC1:ADC_IRQn disable */
     /**
@@ -185,6 +209,50 @@ void HAL_ADC_MspDeInit(ADC_HandleTypeDef* hadc)
 
 }
 
+/**
+* @brief CRC MSP Initialization
+* This function configures the hardware resources used in this example
+* @param hcrc: CRC handle pointer
+* @retval None
+*/
+void HAL_CRC_MspInit(CRC_HandleTypeDef* hcrc)
+{
+  if(hcrc->Instance==CRC)
+  {
+  /* USER CODE BEGIN CRC_MspInit 0 */
+
+  /* USER CODE END CRC_MspInit 0 */
+    /* Peripheral clock enable */
+    __HAL_RCC_CRC_CLK_ENABLE();
+  /* USER CODE BEGIN CRC_MspInit 1 */
+
+  /* USER CODE END CRC_MspInit 1 */
+  }
+
+}
+
+/**
+* @brief CRC MSP De-Initialization
+* This function freeze the hardware resources used in this example
+* @param hcrc: CRC handle pointer
+* @retval None
+*/
+void HAL_CRC_MspDeInit(CRC_HandleTypeDef* hcrc)
+{
+  if(hcrc->Instance==CRC)
+  {
+  /* USER CODE BEGIN CRC_MspDeInit 0 */
+
+  /* USER CODE END CRC_MspDeInit 0 */
+    /* Peripheral clock disable */
+    __HAL_RCC_CRC_CLK_DISABLE();
+  /* USER CODE BEGIN CRC_MspDeInit 1 */
+
+  /* USER CODE END CRC_MspDeInit 1 */
+  }
+
+}
+
 /**
 * @brief DAC MSP Initialization
 * This function configures the hardware resources used in this example
@@ -212,6 +280,9 @@ void HAL_DAC_MspInit(DAC_HandleTypeDef* hdac)
     GPIO_InitStruct.Pull = GPIO_NOPULL;
     HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
 
+    /* DAC interrupt Init */
+    HAL_NVIC_SetPriority(TIM6_DAC_IRQn, 0, 0);
+    HAL_NVIC_EnableIRQ(TIM6_DAC_IRQn);
   /* USER CODE BEGIN DAC_MspInit 1 */
 
   /* USER CODE END DAC_MspInit 1 */
@@ -241,6 +312,8 @@ void HAL_DAC_MspDeInit(DAC_HandleTypeDef* hdac)
     */
     HAL_GPIO_DeInit(GPIOA, GPIO_PIN_4|GPIO_PIN_5);
 
+    /* DAC interrupt DeInit */
+    HAL_NVIC_DisableIRQ(TIM6_DAC_IRQn);
   /* USER CODE BEGIN DAC_MspDeInit 1 */
 
   /* USER CODE END DAC_MspDeInit 1 */
@@ -526,6 +599,20 @@ void HAL_TIM_Base_MspInit(TIM_HandleTypeDef* htim_base)
 
   /* USER CODE END TIM3_MspInit 1 */
   }
+  else if(htim_base->Instance==TIM4)
+  {
+  /* USER CODE BEGIN TIM4_MspInit 0 */
+
+  /* USER CODE END TIM4_MspInit 0 */
+    /* Peripheral clock enable */
+    __HAL_RCC_TIM4_CLK_ENABLE();
+    /* TIM4 interrupt Init */
+    HAL_NVIC_SetPriority(TIM4_IRQn, 0, 0);
+    HAL_NVIC_EnableIRQ(TIM4_IRQn);
+  /* USER CODE BEGIN TIM4_MspInit 1 */
+
+  /* USER CODE END TIM4_MspInit 1 */
+  }
 
 }
 
@@ -568,70 +655,19 @@ void HAL_TIM_Base_MspDeInit(TIM_HandleTypeDef* htim_base)
 
   /* USER CODE END TIM3_MspDeInit 1 */
   }
-
-}
-
-/**
-* @brief UART MSP Initialization
-* This function configures the hardware resources used in this example
-* @param huart: UART handle pointer
-* @retval None
-*/
-void HAL_UART_MspInit(UART_HandleTypeDef* huart)
-{
-  GPIO_InitTypeDef GPIO_InitStruct = {0};
-  if(huart->Instance==USART1)
+  else if(htim_base->Instance==TIM4)
   {
-  /* USER CODE BEGIN USART1_MspInit 0 */
-
-  /* USER CODE END USART1_MspInit 0 */
-    /* Peripheral clock enable */
-    __HAL_RCC_USART1_CLK_ENABLE();
+  /* USER CODE BEGIN TIM4_MspDeInit 0 */
 
-    __HAL_RCC_GPIOA_CLK_ENABLE();
-    /**USART1 GPIO Configuration
-    PA9     ------> USART1_TX
-    PA10     ------> USART1_RX
-    */
-    GPIO_InitStruct.Pin = GPIO_PIN_9|GPIO_PIN_10;
-    GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
-    GPIO_InitStruct.Pull = GPIO_NOPULL;
-    GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
-    GPIO_InitStruct.Alternate = GPIO_AF7_USART1;
-    HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
-
-  /* USER CODE BEGIN USART1_MspInit 1 */
-
-  /* USER CODE END USART1_MspInit 1 */
-  }
-
-}
-
-/**
-* @brief UART MSP De-Initialization
-* This function freeze the hardware resources used in this example
-* @param huart: UART handle pointer
-* @retval None
-*/
-void HAL_UART_MspDeInit(UART_HandleTypeDef* huart)
-{
-  if(huart->Instance==USART1)
-  {
-  /* USER CODE BEGIN USART1_MspDeInit 0 */
-
-  /* USER CODE END USART1_MspDeInit 0 */
+  /* USER CODE END TIM4_MspDeInit 0 */
     /* Peripheral clock disable */
-    __HAL_RCC_USART1_CLK_DISABLE();
-
-    /**USART1 GPIO Configuration
-    PA9     ------> USART1_TX
-    PA10     ------> USART1_RX
-    */
-    HAL_GPIO_DeInit(GPIOA, GPIO_PIN_9|GPIO_PIN_10);
+    __HAL_RCC_TIM4_CLK_DISABLE();
 
-  /* USER CODE BEGIN USART1_MspDeInit 1 */
+    /* TIM4 interrupt DeInit */
+    HAL_NVIC_DisableIRQ(TIM4_IRQn);
+  /* USER CODE BEGIN TIM4_MspDeInit 1 */
 
-  /* USER CODE END USART1_MspDeInit 1 */
+  /* USER CODE END TIM4_MspDeInit 1 */
   }
 
 }

+ 45 - 0
stm32workspace/dosimeter-fw/Core/Src/stm32f4xx_it.c

@@ -57,9 +57,12 @@
 
 /* External variables --------------------------------------------------------*/
 extern PCD_HandleTypeDef hpcd_USB_OTG_FS;
+extern DMA_HandleTypeDef hdma_adc1;
 extern ADC_HandleTypeDef hadc1;
 extern ADC_HandleTypeDef hadc2;
+extern DAC_HandleTypeDef hdac;
 extern TIM_HandleTypeDef htim3;
+extern TIM_HandleTypeDef htim4;
 /* USER CODE BEGIN EV */
 
 /* USER CODE END EV */
@@ -247,6 +250,48 @@ void TIM3_IRQHandler(void)
   /* USER CODE END TIM3_IRQn 1 */
 }
 
+/**
+  * @brief This function handles TIM4 global interrupt.
+  */
+void TIM4_IRQHandler(void)
+{
+  /* USER CODE BEGIN TIM4_IRQn 0 */
+
+  /* USER CODE END TIM4_IRQn 0 */
+  HAL_TIM_IRQHandler(&htim4);
+  /* USER CODE BEGIN TIM4_IRQn 1 */
+
+  /* USER CODE END TIM4_IRQn 1 */
+}
+
+/**
+  * @brief This function handles TIM6 global interrupt and DAC1, DAC2 underrun error interrupts.
+  */
+void TIM6_DAC_IRQHandler(void)
+{
+  /* USER CODE BEGIN TIM6_DAC_IRQn 0 */
+
+  /* USER CODE END TIM6_DAC_IRQn 0 */
+  HAL_DAC_IRQHandler(&hdac);
+  /* USER CODE BEGIN TIM6_DAC_IRQn 1 */
+
+  /* USER CODE END TIM6_DAC_IRQn 1 */
+}
+
+/**
+  * @brief This function handles DMA2 stream0 global interrupt.
+  */
+void DMA2_Stream0_IRQHandler(void)
+{
+  /* USER CODE BEGIN DMA2_Stream0_IRQn 0 */
+
+  /* USER CODE END DMA2_Stream0_IRQn 0 */
+  HAL_DMA_IRQHandler(&hdma_adc1);
+  /* USER CODE BEGIN DMA2_Stream0_IRQn 1 */
+
+  /* USER CODE END DMA2_Stream0_IRQn 1 */
+}
+
 /**
   * @brief This function handles USB On The Go FS global interrupt.
   */

+ 184 - 0
stm32workspace/dosimeter-fw/Drivers/STM32F4xx_HAL_Driver/Inc/stm32f4xx_hal_crc.h

@@ -0,0 +1,184 @@
+/**
+  ******************************************************************************
+  * @file    stm32f4xx_hal_crc.h
+  * @author  MCD Application Team
+  * @brief   Header file of CRC HAL module.
+  ******************************************************************************
+  * @attention
+  *
+  * <h2><center>&copy; Copyright (c) 2016 STMicroelectronics.
+  * All rights reserved.</center></h2>
+  *
+  * This software component is licensed by ST under BSD 3-Clause license,
+  * the "License"; You may not use this file except in compliance with the
+  * License. You may obtain a copy of the License at:
+  *                        opensource.org/licenses/BSD-3-Clause
+  *
+  ******************************************************************************
+  */
+
+/* Define to prevent recursive inclusion -------------------------------------*/
+#ifndef STM32F4xx_HAL_CRC_H
+#define STM32F4xx_HAL_CRC_H
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/* Includes ------------------------------------------------------------------*/
+#include "stm32f4xx_hal_def.h"
+
+/** @addtogroup STM32F4xx_HAL_Driver
+  * @{
+  */
+
+/** @addtogroup CRC
+  * @{
+  */
+
+/* Exported types ------------------------------------------------------------*/
+/** @defgroup CRC_Exported_Types CRC Exported Types
+  * @{
+  */
+
+/**
+  * @brief  CRC HAL State Structure definition
+  */
+typedef enum
+{
+  HAL_CRC_STATE_RESET     = 0x00U,  /*!< CRC not yet initialized or disabled */
+  HAL_CRC_STATE_READY     = 0x01U,  /*!< CRC initialized and ready for use   */
+  HAL_CRC_STATE_BUSY      = 0x02U,  /*!< CRC internal process is ongoing     */
+  HAL_CRC_STATE_TIMEOUT   = 0x03U,  /*!< CRC timeout state                   */
+  HAL_CRC_STATE_ERROR     = 0x04U   /*!< CRC error state                     */
+} HAL_CRC_StateTypeDef;
+
+
+/**
+  * @brief  CRC Handle Structure definition
+  */
+typedef struct
+{
+  CRC_TypeDef                 *Instance;   /*!< Register base address        */
+
+  HAL_LockTypeDef             Lock;        /*!< CRC Locking object           */
+
+  __IO HAL_CRC_StateTypeDef   State;       /*!< CRC communication state      */
+
+} CRC_HandleTypeDef;
+/**
+  * @}
+  */
+
+/* Exported constants --------------------------------------------------------*/
+/** @defgroup CRC_Exported_Constants CRC Exported Constants
+  * @{
+  */
+
+/**
+  * @}
+  */
+
+/* Exported macros -----------------------------------------------------------*/
+/** @defgroup CRC_Exported_Macros CRC Exported Macros
+  * @{
+  */
+
+/** @brief Reset CRC handle state.
+  * @param  __HANDLE__ CRC handle.
+  * @retval None
+  */
+#define __HAL_CRC_RESET_HANDLE_STATE(__HANDLE__) ((__HANDLE__)->State = HAL_CRC_STATE_RESET)
+
+/**
+  * @brief  Reset CRC Data Register.
+  * @param  __HANDLE__ CRC handle
+  * @retval None
+  */
+#define __HAL_CRC_DR_RESET(__HANDLE__) ((__HANDLE__)->Instance->CR |= CRC_CR_RESET)
+
+/**
+  * @brief Store data in the Independent Data (ID) register.
+  * @param __HANDLE__ CRC handle
+  * @param __VALUE__  Value to be stored in the ID register
+  * @note  Refer to the Reference Manual to get the authorized __VALUE__ length in bits
+  * @retval None
+  */
+#define __HAL_CRC_SET_IDR(__HANDLE__, __VALUE__) (WRITE_REG((__HANDLE__)->Instance->IDR, (__VALUE__)))
+
+/**
+  * @brief Return the data stored in the Independent Data (ID) register.
+  * @param __HANDLE__ CRC handle
+  * @note  Refer to the Reference Manual to get the authorized __VALUE__ length in bits
+  * @retval Value of the ID register
+  */
+#define __HAL_CRC_GET_IDR(__HANDLE__) (((__HANDLE__)->Instance->IDR) & CRC_IDR_IDR)
+/**
+  * @}
+  */
+
+
+/* Private macros --------------------------------------------------------*/
+/** @defgroup  CRC_Private_Macros CRC Private Macros
+  * @{
+  */
+
+/**
+  * @}
+  */
+
+/* Exported functions --------------------------------------------------------*/
+/** @defgroup CRC_Exported_Functions CRC Exported Functions
+  * @{
+  */
+
+/* Initialization and de-initialization functions  ****************************/
+/** @defgroup CRC_Exported_Functions_Group1 Initialization and de-initialization functions
+  * @{
+  */
+HAL_StatusTypeDef HAL_CRC_Init(CRC_HandleTypeDef *hcrc);
+HAL_StatusTypeDef HAL_CRC_DeInit(CRC_HandleTypeDef *hcrc);
+void HAL_CRC_MspInit(CRC_HandleTypeDef *hcrc);
+void HAL_CRC_MspDeInit(CRC_HandleTypeDef *hcrc);
+/**
+  * @}
+  */
+
+/* Peripheral Control functions ***********************************************/
+/** @defgroup CRC_Exported_Functions_Group2 Peripheral Control functions
+  * @{
+  */
+uint32_t HAL_CRC_Accumulate(CRC_HandleTypeDef *hcrc, uint32_t pBuffer[], uint32_t BufferLength);
+uint32_t HAL_CRC_Calculate(CRC_HandleTypeDef *hcrc, uint32_t pBuffer[], uint32_t BufferLength);
+/**
+  * @}
+  */
+
+/* Peripheral State and Error functions ***************************************/
+/** @defgroup CRC_Exported_Functions_Group3 Peripheral State functions
+  * @{
+  */
+HAL_CRC_StateTypeDef HAL_CRC_GetState(CRC_HandleTypeDef *hcrc);
+/**
+  * @}
+  */
+
+/**
+  * @}
+  */
+
+/**
+  * @}
+  */
+
+/**
+  * @}
+  */
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* STM32F4xx_HAL_CRC_H */
+
+/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

+ 0 - 886
stm32workspace/dosimeter-fw/Drivers/STM32F4xx_HAL_Driver/Inc/stm32f4xx_hal_uart.h

@@ -1,886 +0,0 @@
-/**
-  ******************************************************************************
-  * @file    stm32f4xx_hal_uart.h
-  * @author  MCD Application Team
-  * @brief   Header file of UART HAL module.
-  ******************************************************************************
-  * @attention
-  *
-  * <h2><center>&copy; Copyright (c) 2016 STMicroelectronics.
-  * All rights reserved.</center></h2>
-  *
-  * This software component is licensed by ST under BSD 3-Clause license,
-  * the "License"; You may not use this file except in compliance with the
-  * License. You may obtain a copy of the License at:
-  *                        opensource.org/licenses/BSD-3-Clause
-  *
-  ******************************************************************************
-  */
-
-/* Define to prevent recursive inclusion -------------------------------------*/
-#ifndef __STM32F4xx_HAL_UART_H
-#define __STM32F4xx_HAL_UART_H
-
-#ifdef __cplusplus
-extern "C" {
-#endif
-
-/* Includes ------------------------------------------------------------------*/
-#include "stm32f4xx_hal_def.h"
-
-/** @addtogroup STM32F4xx_HAL_Driver
-  * @{
-  */
-
-/** @addtogroup UART
-  * @{
-  */
-
-/* Exported types ------------------------------------------------------------*/
-/** @defgroup UART_Exported_Types UART Exported Types
-  * @{
-  */
-
-/**
-  * @brief UART Init Structure definition
-  */
-typedef struct
-{
-  uint32_t BaudRate;                  /*!< This member configures the UART communication baud rate.
-                                           The baud rate is computed using the following formula:
-                                           - IntegerDivider = ((PCLKx) / (8 * (OVR8+1) * (huart->Init.BaudRate)))
-                                           - FractionalDivider = ((IntegerDivider - ((uint32_t) IntegerDivider)) * 8 * (OVR8+1)) + 0.5
-                                           Where OVR8 is the "oversampling by 8 mode" configuration bit in the CR1 register. */
-
-  uint32_t WordLength;                /*!< Specifies the number of data bits transmitted or received in a frame.
-                                           This parameter can be a value of @ref UART_Word_Length */
-
-  uint32_t StopBits;                  /*!< Specifies the number of stop bits transmitted.
-                                           This parameter can be a value of @ref UART_Stop_Bits */
-
-  uint32_t Parity;                    /*!< Specifies the parity mode.
-                                           This parameter can be a value of @ref UART_Parity
-                                           @note When parity is enabled, the computed parity is inserted
-                                                 at the MSB position of the transmitted data (9th bit when
-                                                 the word length is set to 9 data bits; 8th bit when the
-                                                 word length is set to 8 data bits). */
-
-  uint32_t Mode;                      /*!< Specifies whether the Receive or Transmit mode is enabled or disabled.
-                                           This parameter can be a value of @ref UART_Mode */
-
-  uint32_t HwFlowCtl;                 /*!< Specifies whether the hardware flow control mode is enabled or disabled.
-                                           This parameter can be a value of @ref UART_Hardware_Flow_Control */
-
-  uint32_t OverSampling;              /*!< Specifies whether the Over sampling 8 is enabled or disabled, to achieve higher speed (up to fPCLK/8).
-                                           This parameter can be a value of @ref UART_Over_Sampling */
-} UART_InitTypeDef;
-
-/**
-  * @brief HAL UART State structures definition
-  * @note  HAL UART State value is a combination of 2 different substates: gState and RxState.
-  *        - gState contains UART state information related to global Handle management
-  *          and also information related to Tx operations.
-  *          gState value coding follow below described bitmap :
-  *          b7-b6  Error information
-  *             00 : No Error
-  *             01 : (Not Used)
-  *             10 : Timeout
-  *             11 : Error
-  *          b5     Peripheral initialization status
-  *             0  : Reset (Peripheral not initialized)
-  *             1  : Init done (Peripheral initialized. HAL UART Init function already called)
-  *          b4-b3  (not used)
-  *             xx : Should be set to 00
-  *          b2     Intrinsic process state
-  *             0  : Ready
-  *             1  : Busy (Peripheral busy with some configuration or internal operations)
-  *          b1     (not used)
-  *             x  : Should be set to 0
-  *          b0     Tx state
-  *             0  : Ready (no Tx operation ongoing)
-  *             1  : Busy (Tx operation ongoing)
-  *        - RxState contains information related to Rx operations.
-  *          RxState value coding follow below described bitmap :
-  *          b7-b6  (not used)
-  *             xx : Should be set to 00
-  *          b5     Peripheral initialization status
-  *             0  : Reset (Peripheral not initialized)
-  *             1  : Init done (Peripheral initialized)
-  *          b4-b2  (not used)
-  *            xxx : Should be set to 000
-  *          b1     Rx state
-  *             0  : Ready (no Rx operation ongoing)
-  *             1  : Busy (Rx operation ongoing)
-  *          b0     (not used)
-  *             x  : Should be set to 0.
-  */
-typedef enum
-{
-  HAL_UART_STATE_RESET             = 0x00U,    /*!< Peripheral is not yet Initialized
-                                                   Value is allowed for gState and RxState */
-  HAL_UART_STATE_READY             = 0x20U,    /*!< Peripheral Initialized and ready for use
-                                                   Value is allowed for gState and RxState */
-  HAL_UART_STATE_BUSY              = 0x24U,    /*!< an internal process is ongoing
-                                                   Value is allowed for gState only */
-  HAL_UART_STATE_BUSY_TX           = 0x21U,    /*!< Data Transmission process is ongoing
-                                                   Value is allowed for gState only */
-  HAL_UART_STATE_BUSY_RX           = 0x22U,    /*!< Data Reception process is ongoing
-                                                   Value is allowed for RxState only */
-  HAL_UART_STATE_BUSY_TX_RX        = 0x23U,    /*!< Data Transmission and Reception process is ongoing
-                                                   Not to be used for neither gState nor RxState.
-                                                   Value is result of combination (Or) between gState and RxState values */
-  HAL_UART_STATE_TIMEOUT           = 0xA0U,    /*!< Timeout state
-                                                   Value is allowed for gState only */
-  HAL_UART_STATE_ERROR             = 0xE0U     /*!< Error
-                                                   Value is allowed for gState only */
-} HAL_UART_StateTypeDef;
-
-/**
-  * @brief HAL UART Reception type definition
-  * @note  HAL UART Reception type value aims to identify which type of Reception is ongoing.
-  *        It is expected to admit following values :
-  *           HAL_UART_RECEPTION_STANDARD         = 0x00U,
-  *           HAL_UART_RECEPTION_TOIDLE           = 0x01U,
-  */
-typedef uint32_t HAL_UART_RxTypeTypeDef;
-
-/**
-  * @brief  UART handle Structure definition
-  */
-typedef struct __UART_HandleTypeDef
-{
-  USART_TypeDef                 *Instance;        /*!< UART registers base address        */
-
-  UART_InitTypeDef              Init;             /*!< UART communication parameters      */
-
-  uint8_t                       *pTxBuffPtr;      /*!< Pointer to UART Tx transfer Buffer */
-
-  uint16_t                      TxXferSize;       /*!< UART Tx Transfer size              */
-
-  __IO uint16_t                 TxXferCount;      /*!< UART Tx Transfer Counter           */
-
-  uint8_t                       *pRxBuffPtr;      /*!< Pointer to UART Rx transfer Buffer */
-
-  uint16_t                      RxXferSize;       /*!< UART Rx Transfer size              */
-
-  __IO uint16_t                 RxXferCount;      /*!< UART Rx Transfer Counter           */
-
-  __IO HAL_UART_RxTypeTypeDef ReceptionType;      /*!< Type of ongoing reception          */
-
-  DMA_HandleTypeDef             *hdmatx;          /*!< UART Tx DMA Handle parameters      */
-
-  DMA_HandleTypeDef             *hdmarx;          /*!< UART Rx DMA Handle parameters      */
-
-  HAL_LockTypeDef               Lock;             /*!< Locking object                     */
-
-  __IO HAL_UART_StateTypeDef    gState;           /*!< UART state information related to global Handle management
-                                                       and also related to Tx operations.
-                                                       This parameter can be a value of @ref HAL_UART_StateTypeDef */
-
-  __IO HAL_UART_StateTypeDef    RxState;          /*!< UART state information related to Rx operations.
-                                                       This parameter can be a value of @ref HAL_UART_StateTypeDef */
-
-  __IO uint32_t                 ErrorCode;        /*!< UART Error code                    */
-
-#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
-  void (* TxHalfCpltCallback)(struct __UART_HandleTypeDef *huart);        /*!< UART Tx Half Complete Callback        */
-  void (* TxCpltCallback)(struct __UART_HandleTypeDef *huart);            /*!< UART Tx Complete Callback             */
-  void (* RxHalfCpltCallback)(struct __UART_HandleTypeDef *huart);        /*!< UART Rx Half Complete Callback        */
-  void (* RxCpltCallback)(struct __UART_HandleTypeDef *huart);            /*!< UART Rx Complete Callback             */
-  void (* ErrorCallback)(struct __UART_HandleTypeDef *huart);             /*!< UART Error Callback                   */
-  void (* AbortCpltCallback)(struct __UART_HandleTypeDef *huart);         /*!< UART Abort Complete Callback          */
-  void (* AbortTransmitCpltCallback)(struct __UART_HandleTypeDef *huart); /*!< UART Abort Transmit Complete Callback */
-  void (* AbortReceiveCpltCallback)(struct __UART_HandleTypeDef *huart);  /*!< UART Abort Receive Complete Callback  */
-  void (* WakeupCallback)(struct __UART_HandleTypeDef *huart);            /*!< UART Wakeup Callback                  */
-  void (* RxEventCallback)(struct __UART_HandleTypeDef *huart, uint16_t Pos); /*!< UART Reception Event Callback     */
-
-  void (* MspInitCallback)(struct __UART_HandleTypeDef *huart);           /*!< UART Msp Init callback                */
-  void (* MspDeInitCallback)(struct __UART_HandleTypeDef *huart);         /*!< UART Msp DeInit callback              */
-#endif  /* USE_HAL_UART_REGISTER_CALLBACKS */
-
-} UART_HandleTypeDef;
-
-#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
-/**
-  * @brief  HAL UART Callback ID enumeration definition
-  */
-typedef enum
-{
-  HAL_UART_TX_HALFCOMPLETE_CB_ID         = 0x00U,    /*!< UART Tx Half Complete Callback ID        */
-  HAL_UART_TX_COMPLETE_CB_ID             = 0x01U,    /*!< UART Tx Complete Callback ID             */
-  HAL_UART_RX_HALFCOMPLETE_CB_ID         = 0x02U,    /*!< UART Rx Half Complete Callback ID        */
-  HAL_UART_RX_COMPLETE_CB_ID             = 0x03U,    /*!< UART Rx Complete Callback ID             */
-  HAL_UART_ERROR_CB_ID                   = 0x04U,    /*!< UART Error Callback ID                   */
-  HAL_UART_ABORT_COMPLETE_CB_ID          = 0x05U,    /*!< UART Abort Complete Callback ID          */
-  HAL_UART_ABORT_TRANSMIT_COMPLETE_CB_ID = 0x06U,    /*!< UART Abort Transmit Complete Callback ID */
-  HAL_UART_ABORT_RECEIVE_COMPLETE_CB_ID  = 0x07U,    /*!< UART Abort Receive Complete Callback ID  */
-  HAL_UART_WAKEUP_CB_ID                  = 0x08U,    /*!< UART Wakeup Callback ID                  */
-
-  HAL_UART_MSPINIT_CB_ID                 = 0x0BU,    /*!< UART MspInit callback ID                 */
-  HAL_UART_MSPDEINIT_CB_ID               = 0x0CU     /*!< UART MspDeInit callback ID               */
-
-} HAL_UART_CallbackIDTypeDef;
-
-/**
-  * @brief  HAL UART Callback pointer definition
-  */
-typedef  void (*pUART_CallbackTypeDef)(UART_HandleTypeDef *huart);  /*!< pointer to an UART callback function */
-typedef  void (*pUART_RxEventCallbackTypeDef)(struct __UART_HandleTypeDef *huart, uint16_t Pos);   /*!< pointer to a UART Rx Event specific callback function */
-
-#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
-
-/**
-  * @}
-  */
-
-/* Exported constants --------------------------------------------------------*/
-/** @defgroup UART_Exported_Constants UART Exported Constants
-  * @{
-  */
-
-/** @defgroup UART_Error_Code UART Error Code
-  * @{
-  */
-#define HAL_UART_ERROR_NONE              0x00000000U   /*!< No error            */
-#define HAL_UART_ERROR_PE                0x00000001U   /*!< Parity error        */
-#define HAL_UART_ERROR_NE                0x00000002U   /*!< Noise error         */
-#define HAL_UART_ERROR_FE                0x00000004U   /*!< Frame error         */
-#define HAL_UART_ERROR_ORE               0x00000008U   /*!< Overrun error       */
-#define HAL_UART_ERROR_DMA               0x00000010U   /*!< DMA transfer error  */
-#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
-#define  HAL_UART_ERROR_INVALID_CALLBACK 0x00000020U   /*!< Invalid Callback error  */
-#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
-/**
-  * @}
-  */
-
-/** @defgroup UART_Word_Length UART Word Length
-  * @{
-  */
-#define UART_WORDLENGTH_8B                  0x00000000U
-#define UART_WORDLENGTH_9B                  ((uint32_t)USART_CR1_M)
-/**
-  * @}
-  */
-
-/** @defgroup UART_Stop_Bits UART Number of Stop Bits
-  * @{
-  */
-#define UART_STOPBITS_1                     0x00000000U
-#define UART_STOPBITS_2                     ((uint32_t)USART_CR2_STOP_1)
-/**
-  * @}
-  */
-
-/** @defgroup UART_Parity UART Parity
-  * @{
-  */
-#define UART_PARITY_NONE                    0x00000000U
-#define UART_PARITY_EVEN                    ((uint32_t)USART_CR1_PCE)
-#define UART_PARITY_ODD                     ((uint32_t)(USART_CR1_PCE | USART_CR1_PS))
-/**
-  * @}
-  */
-
-/** @defgroup UART_Hardware_Flow_Control UART Hardware Flow Control
-  * @{
-  */
-#define UART_HWCONTROL_NONE                  0x00000000U
-#define UART_HWCONTROL_RTS                   ((uint32_t)USART_CR3_RTSE)
-#define UART_HWCONTROL_CTS                   ((uint32_t)USART_CR3_CTSE)
-#define UART_HWCONTROL_RTS_CTS               ((uint32_t)(USART_CR3_RTSE | USART_CR3_CTSE))
-/**
-  * @}
-  */
-
-/** @defgroup UART_Mode UART Transfer Mode
-  * @{
-  */
-#define UART_MODE_RX                        ((uint32_t)USART_CR1_RE)
-#define UART_MODE_TX                        ((uint32_t)USART_CR1_TE)
-#define UART_MODE_TX_RX                     ((uint32_t)(USART_CR1_TE | USART_CR1_RE))
-/**
-  * @}
-  */
-
-/** @defgroup UART_State UART State
-  * @{
-  */
-#define UART_STATE_DISABLE                  0x00000000U
-#define UART_STATE_ENABLE                   ((uint32_t)USART_CR1_UE)
-/**
-  * @}
-  */
-
-/** @defgroup UART_Over_Sampling UART Over Sampling
-  * @{
-  */
-#define UART_OVERSAMPLING_16                    0x00000000U
-#define UART_OVERSAMPLING_8                     ((uint32_t)USART_CR1_OVER8)
-/**
-  * @}
-  */
-
-/** @defgroup UART_LIN_Break_Detection_Length  UART LIN Break Detection Length
-  * @{
-  */
-#define UART_LINBREAKDETECTLENGTH_10B      0x00000000U
-#define UART_LINBREAKDETECTLENGTH_11B      ((uint32_t)USART_CR2_LBDL)
-/**
-  * @}
-  */
-
-/** @defgroup UART_WakeUp_functions  UART Wakeup Functions
-  * @{
-  */
-#define UART_WAKEUPMETHOD_IDLELINE                0x00000000U
-#define UART_WAKEUPMETHOD_ADDRESSMARK             ((uint32_t)USART_CR1_WAKE)
-/**
-  * @}
-  */
-
-/** @defgroup UART_Flags   UART FLags
-  *        Elements values convention: 0xXXXX
-  *           - 0xXXXX  : Flag mask in the SR register
-  * @{
-  */
-#define UART_FLAG_CTS                       ((uint32_t)USART_SR_CTS)
-#define UART_FLAG_LBD                       ((uint32_t)USART_SR_LBD)
-#define UART_FLAG_TXE                       ((uint32_t)USART_SR_TXE)
-#define UART_FLAG_TC                        ((uint32_t)USART_SR_TC)
-#define UART_FLAG_RXNE                      ((uint32_t)USART_SR_RXNE)
-#define UART_FLAG_IDLE                      ((uint32_t)USART_SR_IDLE)
-#define UART_FLAG_ORE                       ((uint32_t)USART_SR_ORE)
-#define UART_FLAG_NE                        ((uint32_t)USART_SR_NE)
-#define UART_FLAG_FE                        ((uint32_t)USART_SR_FE)
-#define UART_FLAG_PE                        ((uint32_t)USART_SR_PE)
-/**
-  * @}
-  */
-
-/** @defgroup UART_Interrupt_definition  UART Interrupt Definitions
-  *        Elements values convention: 0xY000XXXX
-  *           - XXXX  : Interrupt mask (16 bits) in the Y register
-  *           - Y  : Interrupt source register (2bits)
-  *                   - 0001: CR1 register
-  *                   - 0010: CR2 register
-  *                   - 0011: CR3 register
-  * @{
-  */
-
-#define UART_IT_PE                       ((uint32_t)(UART_CR1_REG_INDEX << 28U | USART_CR1_PEIE))
-#define UART_IT_TXE                      ((uint32_t)(UART_CR1_REG_INDEX << 28U | USART_CR1_TXEIE))
-#define UART_IT_TC                       ((uint32_t)(UART_CR1_REG_INDEX << 28U | USART_CR1_TCIE))
-#define UART_IT_RXNE                     ((uint32_t)(UART_CR1_REG_INDEX << 28U | USART_CR1_RXNEIE))
-#define UART_IT_IDLE                     ((uint32_t)(UART_CR1_REG_INDEX << 28U | USART_CR1_IDLEIE))
-
-#define UART_IT_LBD                      ((uint32_t)(UART_CR2_REG_INDEX << 28U | USART_CR2_LBDIE))
-
-#define UART_IT_CTS                      ((uint32_t)(UART_CR3_REG_INDEX << 28U | USART_CR3_CTSIE))
-#define UART_IT_ERR                      ((uint32_t)(UART_CR3_REG_INDEX << 28U | USART_CR3_EIE))
-/**
-  * @}
-  */
-
-/** @defgroup UART_RECEPTION_TYPE_Values  UART Reception type values
-  * @{
-  */
-#define HAL_UART_RECEPTION_STANDARD          (0x00000000U)             /*!< Standard reception                       */
-#define HAL_UART_RECEPTION_TOIDLE            (0x00000001U)             /*!< Reception till completion or IDLE event  */
-/**
-  * @}
-  */
-
-/**
-  * @}
-  */
-
-/* Exported macro ------------------------------------------------------------*/
-/** @defgroup UART_Exported_Macros UART Exported Macros
-  * @{
-  */
-
-/** @brief Reset UART handle gstate & RxState
-  * @param  __HANDLE__ specifies the UART Handle.
-  *         UART Handle selects the USARTx or UARTy peripheral
-  *         (USART,UART availability and x,y values depending on device).
-  * @retval None
-  */
-#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
-#define __HAL_UART_RESET_HANDLE_STATE(__HANDLE__)  do{                                                   \
-                                                       (__HANDLE__)->gState = HAL_UART_STATE_RESET;      \
-                                                       (__HANDLE__)->RxState = HAL_UART_STATE_RESET;     \
-                                                       (__HANDLE__)->MspInitCallback = NULL;             \
-                                                       (__HANDLE__)->MspDeInitCallback = NULL;           \
-                                                     } while(0U)
-#else
-#define __HAL_UART_RESET_HANDLE_STATE(__HANDLE__)  do{                                                   \
-                                                       (__HANDLE__)->gState = HAL_UART_STATE_RESET;      \
-                                                       (__HANDLE__)->RxState = HAL_UART_STATE_RESET;     \
-                                                     } while(0U)
-#endif /*USE_HAL_UART_REGISTER_CALLBACKS */
-
-/** @brief  Flushes the UART DR register
-  * @param  __HANDLE__ specifies the UART Handle.
-  *         UART Handle selects the USARTx or UARTy peripheral
-  *         (USART,UART availability and x,y values depending on device).
-  */
-#define __HAL_UART_FLUSH_DRREGISTER(__HANDLE__) ((__HANDLE__)->Instance->DR)
-
-/** @brief  Checks whether the specified UART flag is set or not.
-  * @param  __HANDLE__ specifies the UART Handle.
-  *         UART Handle selects the USARTx or UARTy peripheral
-  *         (USART,UART availability and x,y values depending on device).
-  * @param  __FLAG__ specifies the flag to check.
-  *        This parameter can be one of the following values:
-  *            @arg UART_FLAG_CTS:  CTS Change flag (not available for UART4 and UART5)
-  *            @arg UART_FLAG_LBD:  LIN Break detection flag
-  *            @arg UART_FLAG_TXE:  Transmit data register empty flag
-  *            @arg UART_FLAG_TC:   Transmission Complete flag
-  *            @arg UART_FLAG_RXNE: Receive data register not empty flag
-  *            @arg UART_FLAG_IDLE: Idle Line detection flag
-  *            @arg UART_FLAG_ORE:  Overrun Error flag
-  *            @arg UART_FLAG_NE:   Noise Error flag
-  *            @arg UART_FLAG_FE:   Framing Error flag
-  *            @arg UART_FLAG_PE:   Parity Error flag
-  * @retval The new state of __FLAG__ (TRUE or FALSE).
-  */
-#define __HAL_UART_GET_FLAG(__HANDLE__, __FLAG__) (((__HANDLE__)->Instance->SR & (__FLAG__)) == (__FLAG__))
-
-/** @brief  Clears the specified UART pending flag.
-  * @param  __HANDLE__ specifies the UART Handle.
-  *         UART Handle selects the USARTx or UARTy peripheral
-  *         (USART,UART availability and x,y values depending on device).
-  * @param  __FLAG__ specifies the flag to check.
-  *          This parameter can be any combination of the following values:
-  *            @arg UART_FLAG_CTS:  CTS Change flag (not available for UART4 and UART5).
-  *            @arg UART_FLAG_LBD:  LIN Break detection flag.
-  *            @arg UART_FLAG_TC:   Transmission Complete flag.
-  *            @arg UART_FLAG_RXNE: Receive data register not empty flag.
-  *
-  * @note   PE (Parity error), FE (Framing error), NE (Noise error), ORE (Overrun
-  *          error) and IDLE (Idle line detected) flags are cleared by software
-  *          sequence: a read operation to USART_SR register followed by a read
-  *          operation to USART_DR register.
-  * @note   RXNE flag can be also cleared by a read to the USART_DR register.
-  * @note   TC flag can be also cleared by software sequence: a read operation to
-  *          USART_SR register followed by a write operation to USART_DR register.
-  * @note   TXE flag is cleared only by a write to the USART_DR register.
-  *
-  * @retval None
-  */
-#define __HAL_UART_CLEAR_FLAG(__HANDLE__, __FLAG__) ((__HANDLE__)->Instance->SR = ~(__FLAG__))
-
-/** @brief  Clears the UART PE pending flag.
-  * @param  __HANDLE__ specifies the UART Handle.
-  *         UART Handle selects the USARTx or UARTy peripheral
-  *         (USART,UART availability and x,y values depending on device).
-  * @retval None
-  */
-#define __HAL_UART_CLEAR_PEFLAG(__HANDLE__)     \
-  do{                                           \
-    __IO uint32_t tmpreg = 0x00U;               \
-    tmpreg = (__HANDLE__)->Instance->SR;        \
-    tmpreg = (__HANDLE__)->Instance->DR;        \
-    UNUSED(tmpreg);                             \
-  } while(0U)
-
-/** @brief  Clears the UART FE pending flag.
-  * @param  __HANDLE__ specifies the UART Handle.
-  *         UART Handle selects the USARTx or UARTy peripheral
-  *         (USART,UART availability and x,y values depending on device).
-  * @retval None
-  */
-#define __HAL_UART_CLEAR_FEFLAG(__HANDLE__) __HAL_UART_CLEAR_PEFLAG(__HANDLE__)
-
-/** @brief  Clears the UART NE pending flag.
-  * @param  __HANDLE__ specifies the UART Handle.
-  *         UART Handle selects the USARTx or UARTy peripheral
-  *         (USART,UART availability and x,y values depending on device).
-  * @retval None
-  */
-#define __HAL_UART_CLEAR_NEFLAG(__HANDLE__) __HAL_UART_CLEAR_PEFLAG(__HANDLE__)
-
-/** @brief  Clears the UART ORE pending flag.
-  * @param  __HANDLE__ specifies the UART Handle.
-  *         UART Handle selects the USARTx or UARTy peripheral
-  *         (USART,UART availability and x,y values depending on device).
-  * @retval None
-  */
-#define __HAL_UART_CLEAR_OREFLAG(__HANDLE__) __HAL_UART_CLEAR_PEFLAG(__HANDLE__)
-
-/** @brief  Clears the UART IDLE pending flag.
-  * @param  __HANDLE__ specifies the UART Handle.
-  *         UART Handle selects the USARTx or UARTy peripheral
-  *         (USART,UART availability and x,y values depending on device).
-  * @retval None
-  */
-#define __HAL_UART_CLEAR_IDLEFLAG(__HANDLE__) __HAL_UART_CLEAR_PEFLAG(__HANDLE__)
-
-/** @brief  Enable the specified UART interrupt.
-  * @param  __HANDLE__ specifies the UART Handle.
-  *         UART Handle selects the USARTx or UARTy peripheral
-  *         (USART,UART availability and x,y values depending on device).
-  * @param  __INTERRUPT__ specifies the UART interrupt source to enable.
-  *          This parameter can be one of the following values:
-  *            @arg UART_IT_CTS:  CTS change interrupt
-  *            @arg UART_IT_LBD:  LIN Break detection interrupt
-  *            @arg UART_IT_TXE:  Transmit Data Register empty interrupt
-  *            @arg UART_IT_TC:   Transmission complete interrupt
-  *            @arg UART_IT_RXNE: Receive Data register not empty interrupt
-  *            @arg UART_IT_IDLE: Idle line detection interrupt
-  *            @arg UART_IT_PE:   Parity Error interrupt
-  *            @arg UART_IT_ERR:  Error interrupt(Frame error, noise error, overrun error)
-  * @retval None
-  */
-#define __HAL_UART_ENABLE_IT(__HANDLE__, __INTERRUPT__)   ((((__INTERRUPT__) >> 28U) == UART_CR1_REG_INDEX)? ((__HANDLE__)->Instance->CR1 |= ((__INTERRUPT__) & UART_IT_MASK)): \
-                                                           (((__INTERRUPT__) >> 28U) == UART_CR2_REG_INDEX)? ((__HANDLE__)->Instance->CR2 |= ((__INTERRUPT__) & UART_IT_MASK)): \
-                                                           ((__HANDLE__)->Instance->CR3 |= ((__INTERRUPT__) & UART_IT_MASK)))
-
-/** @brief  Disable the specified UART interrupt.
-  * @param  __HANDLE__ specifies the UART Handle.
-  *         UART Handle selects the USARTx or UARTy peripheral
-  *         (USART,UART availability and x,y values depending on device).
-  * @param  __INTERRUPT__ specifies the UART interrupt source to disable.
-  *          This parameter can be one of the following values:
-  *            @arg UART_IT_CTS:  CTS change interrupt
-  *            @arg UART_IT_LBD:  LIN Break detection interrupt
-  *            @arg UART_IT_TXE:  Transmit Data Register empty interrupt
-  *            @arg UART_IT_TC:   Transmission complete interrupt
-  *            @arg UART_IT_RXNE: Receive Data register not empty interrupt
-  *            @arg UART_IT_IDLE: Idle line detection interrupt
-  *            @arg UART_IT_PE:   Parity Error interrupt
-  *            @arg UART_IT_ERR:  Error interrupt(Frame error, noise error, overrun error)
-  * @retval None
-  */
-#define __HAL_UART_DISABLE_IT(__HANDLE__, __INTERRUPT__)  ((((__INTERRUPT__) >> 28U) == UART_CR1_REG_INDEX)? ((__HANDLE__)->Instance->CR1 &= ~((__INTERRUPT__) & UART_IT_MASK)): \
-                                                           (((__INTERRUPT__) >> 28U) == UART_CR2_REG_INDEX)? ((__HANDLE__)->Instance->CR2 &= ~((__INTERRUPT__) & UART_IT_MASK)): \
-                                                           ((__HANDLE__)->Instance->CR3 &= ~ ((__INTERRUPT__) & UART_IT_MASK)))
-
-/** @brief  Checks whether the specified UART interrupt source is enabled or not.
-  * @param  __HANDLE__ specifies the UART Handle.
-  *         UART Handle selects the USARTx or UARTy peripheral
-  *         (USART,UART availability and x,y values depending on device).
-  * @param  __IT__ specifies the UART interrupt source to check.
-  *          This parameter can be one of the following values:
-  *            @arg UART_IT_CTS: CTS change interrupt (not available for UART4 and UART5)
-  *            @arg UART_IT_LBD: LIN Break detection interrupt
-  *            @arg UART_IT_TXE: Transmit Data Register empty interrupt
-  *            @arg UART_IT_TC:  Transmission complete interrupt
-  *            @arg UART_IT_RXNE: Receive Data register not empty interrupt
-  *            @arg UART_IT_IDLE: Idle line detection interrupt
-  *            @arg UART_IT_ERR: Error interrupt
-  * @retval The new state of __IT__ (TRUE or FALSE).
-  */
-#define __HAL_UART_GET_IT_SOURCE(__HANDLE__, __IT__) (((((__IT__) >> 28U) == UART_CR1_REG_INDEX)? (__HANDLE__)->Instance->CR1:(((((uint32_t)(__IT__)) >> 28U) == UART_CR2_REG_INDEX)? \
-                                                       (__HANDLE__)->Instance->CR2 : (__HANDLE__)->Instance->CR3)) & (((uint32_t)(__IT__)) & UART_IT_MASK))
-
-/** @brief  Enable CTS flow control
-  * @note   This macro allows to enable CTS hardware flow control for a given UART instance,
-  *         without need to call HAL_UART_Init() function.
-  *         As involving direct access to UART registers, usage of this macro should be fully endorsed by user.
-  * @note   As macro is expected to be used for modifying CTS Hw flow control feature activation, without need
-  *         for USART instance Deinit/Init, following conditions for macro call should be fulfilled :
-  *           - UART instance should have already been initialised (through call of HAL_UART_Init() )
-  *           - macro could only be called when corresponding UART instance is disabled (i.e __HAL_UART_DISABLE(__HANDLE__))
-  *             and should be followed by an Enable macro (i.e __HAL_UART_ENABLE(__HANDLE__)).
-  * @param  __HANDLE__ specifies the UART Handle.
-  *         The Handle Instance can be any USARTx (supporting the HW Flow control feature).
-  *         It is used to select the USART peripheral (USART availability and x value depending on device).
-  * @retval None
-  */
-#define __HAL_UART_HWCONTROL_CTS_ENABLE(__HANDLE__)        \
-  do{                                                      \
-    ATOMIC_SET_BIT((__HANDLE__)->Instance->CR3, USART_CR3_CTSE);  \
-    (__HANDLE__)->Init.HwFlowCtl |= USART_CR3_CTSE;        \
-  } while(0U)
-
-/** @brief  Disable CTS flow control
-  * @note   This macro allows to disable CTS hardware flow control for a given UART instance,
-  *         without need to call HAL_UART_Init() function.
-  *         As involving direct access to UART registers, usage of this macro should be fully endorsed by user.
-  * @note   As macro is expected to be used for modifying CTS Hw flow control feature activation, without need
-  *         for USART instance Deinit/Init, following conditions for macro call should be fulfilled :
-  *           - UART instance should have already been initialised (through call of HAL_UART_Init() )
-  *           - macro could only be called when corresponding UART instance is disabled (i.e __HAL_UART_DISABLE(__HANDLE__))
-  *             and should be followed by an Enable macro (i.e __HAL_UART_ENABLE(__HANDLE__)).
-  * @param  __HANDLE__ specifies the UART Handle.
-  *         The Handle Instance can be any USARTx (supporting the HW Flow control feature).
-  *         It is used to select the USART peripheral (USART availability and x value depending on device).
-  * @retval None
-  */
-#define __HAL_UART_HWCONTROL_CTS_DISABLE(__HANDLE__)        \
-  do{                                                       \
-    ATOMIC_CLEAR_BIT((__HANDLE__)->Instance->CR3, USART_CR3_CTSE); \
-    (__HANDLE__)->Init.HwFlowCtl &= ~(USART_CR3_CTSE);      \
-  } while(0U)
-
-/** @brief  Enable RTS flow control
-  *         This macro allows to enable RTS hardware flow control for a given UART instance,
-  *         without need to call HAL_UART_Init() function.
-  *         As involving direct access to UART registers, usage of this macro should be fully endorsed by user.
-  * @note   As macro is expected to be used for modifying RTS Hw flow control feature activation, without need
-  *         for USART instance Deinit/Init, following conditions for macro call should be fulfilled :
-  *           - UART instance should have already been initialised (through call of HAL_UART_Init() )
-  *           - macro could only be called when corresponding UART instance is disabled (i.e __HAL_UART_DISABLE(__HANDLE__))
-  *             and should be followed by an Enable macro (i.e __HAL_UART_ENABLE(__HANDLE__)).
-  * @param  __HANDLE__ specifies the UART Handle.
-  *         The Handle Instance can be any USARTx (supporting the HW Flow control feature).
-  *         It is used to select the USART peripheral (USART availability and x value depending on device).
-  * @retval None
-  */
-#define __HAL_UART_HWCONTROL_RTS_ENABLE(__HANDLE__)       \
-  do{                                                     \
-    ATOMIC_SET_BIT((__HANDLE__)->Instance->CR3, USART_CR3_RTSE); \
-    (__HANDLE__)->Init.HwFlowCtl |= USART_CR3_RTSE;       \
-  } while(0U)
-
-/** @brief  Disable RTS flow control
-  *         This macro allows to disable RTS hardware flow control for a given UART instance,
-  *         without need to call HAL_UART_Init() function.
-  *         As involving direct access to UART registers, usage of this macro should be fully endorsed by user.
-  * @note   As macro is expected to be used for modifying RTS Hw flow control feature activation, without need
-  *         for USART instance Deinit/Init, following conditions for macro call should be fulfilled :
-  *           - UART instance should have already been initialised (through call of HAL_UART_Init() )
-  *           - macro could only be called when corresponding UART instance is disabled (i.e __HAL_UART_DISABLE(__HANDLE__))
-  *             and should be followed by an Enable macro (i.e __HAL_UART_ENABLE(__HANDLE__)).
-  * @param  __HANDLE__ specifies the UART Handle.
-  *         The Handle Instance can be any USARTx (supporting the HW Flow control feature).
-  *         It is used to select the USART peripheral (USART availability and x value depending on device).
-  * @retval None
-  */
-#define __HAL_UART_HWCONTROL_RTS_DISABLE(__HANDLE__)       \
-  do{                                                      \
-    ATOMIC_CLEAR_BIT((__HANDLE__)->Instance->CR3, USART_CR3_RTSE);\
-    (__HANDLE__)->Init.HwFlowCtl &= ~(USART_CR3_RTSE);     \
-  } while(0U)
-
-/** @brief  Macro to enable the UART's one bit sample method
-  * @param  __HANDLE__ specifies the UART Handle.
-  * @retval None
-  */
-#define __HAL_UART_ONE_BIT_SAMPLE_ENABLE(__HANDLE__) ((__HANDLE__)->Instance->CR3|= USART_CR3_ONEBIT)
-
-/** @brief  Macro to disable the UART's one bit sample method
-  * @param  __HANDLE__ specifies the UART Handle.
-  * @retval None
-  */
-#define __HAL_UART_ONE_BIT_SAMPLE_DISABLE(__HANDLE__) ((__HANDLE__)->Instance->CR3\
-                                                       &= (uint16_t)~((uint16_t)USART_CR3_ONEBIT))
-
-/** @brief  Enable UART
-  * @param  __HANDLE__ specifies the UART Handle.
-  * @retval None
-  */
-#define __HAL_UART_ENABLE(__HANDLE__)               ((__HANDLE__)->Instance->CR1 |=  USART_CR1_UE)
-
-/** @brief  Disable UART
-  * @param  __HANDLE__ specifies the UART Handle.
-  * @retval None
-  */
-#define __HAL_UART_DISABLE(__HANDLE__)              ((__HANDLE__)->Instance->CR1 &=  ~USART_CR1_UE)
-/**
-  * @}
-  */
-
-/* Exported functions --------------------------------------------------------*/
-/** @addtogroup UART_Exported_Functions
-  * @{
-  */
-
-/** @addtogroup UART_Exported_Functions_Group1 Initialization and de-initialization functions
-  * @{
-  */
-
-/* Initialization/de-initialization functions  **********************************/
-HAL_StatusTypeDef HAL_UART_Init(UART_HandleTypeDef *huart);
-HAL_StatusTypeDef HAL_HalfDuplex_Init(UART_HandleTypeDef *huart);
-HAL_StatusTypeDef HAL_LIN_Init(UART_HandleTypeDef *huart, uint32_t BreakDetectLength);
-HAL_StatusTypeDef HAL_MultiProcessor_Init(UART_HandleTypeDef *huart, uint8_t Address, uint32_t WakeUpMethod);
-HAL_StatusTypeDef HAL_UART_DeInit(UART_HandleTypeDef *huart);
-void HAL_UART_MspInit(UART_HandleTypeDef *huart);
-void HAL_UART_MspDeInit(UART_HandleTypeDef *huart);
-
-/* Callbacks Register/UnRegister functions  ***********************************/
-#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
-HAL_StatusTypeDef HAL_UART_RegisterCallback(UART_HandleTypeDef *huart, HAL_UART_CallbackIDTypeDef CallbackID,
-                                            pUART_CallbackTypeDef pCallback);
-HAL_StatusTypeDef HAL_UART_UnRegisterCallback(UART_HandleTypeDef *huart, HAL_UART_CallbackIDTypeDef CallbackID);
-
-HAL_StatusTypeDef HAL_UART_RegisterRxEventCallback(UART_HandleTypeDef *huart, pUART_RxEventCallbackTypeDef pCallback);
-HAL_StatusTypeDef HAL_UART_UnRegisterRxEventCallback(UART_HandleTypeDef *huart);
-#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
-
-/**
-  * @}
-  */
-
-/** @addtogroup UART_Exported_Functions_Group2 IO operation functions
-  * @{
-  */
-
-/* IO operation functions *******************************************************/
-HAL_StatusTypeDef HAL_UART_Transmit(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size, uint32_t Timeout);
-HAL_StatusTypeDef HAL_UART_Receive(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size, uint32_t Timeout);
-HAL_StatusTypeDef HAL_UART_Transmit_IT(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size);
-HAL_StatusTypeDef HAL_UART_Receive_IT(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size);
-HAL_StatusTypeDef HAL_UART_Transmit_DMA(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size);
-HAL_StatusTypeDef HAL_UART_Receive_DMA(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size);
-HAL_StatusTypeDef HAL_UART_DMAPause(UART_HandleTypeDef *huart);
-HAL_StatusTypeDef HAL_UART_DMAResume(UART_HandleTypeDef *huart);
-HAL_StatusTypeDef HAL_UART_DMAStop(UART_HandleTypeDef *huart);
-
-HAL_StatusTypeDef HAL_UARTEx_ReceiveToIdle(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size, uint16_t *RxLen,
-                                           uint32_t Timeout);
-HAL_StatusTypeDef HAL_UARTEx_ReceiveToIdle_IT(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size);
-HAL_StatusTypeDef HAL_UARTEx_ReceiveToIdle_DMA(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size);
-
-/* Transfer Abort functions */
-HAL_StatusTypeDef HAL_UART_Abort(UART_HandleTypeDef *huart);
-HAL_StatusTypeDef HAL_UART_AbortTransmit(UART_HandleTypeDef *huart);
-HAL_StatusTypeDef HAL_UART_AbortReceive(UART_HandleTypeDef *huart);
-HAL_StatusTypeDef HAL_UART_Abort_IT(UART_HandleTypeDef *huart);
-HAL_StatusTypeDef HAL_UART_AbortTransmit_IT(UART_HandleTypeDef *huart);
-HAL_StatusTypeDef HAL_UART_AbortReceive_IT(UART_HandleTypeDef *huart);
-
-void HAL_UART_IRQHandler(UART_HandleTypeDef *huart);
-void HAL_UART_TxCpltCallback(UART_HandleTypeDef *huart);
-void HAL_UART_TxHalfCpltCallback(UART_HandleTypeDef *huart);
-void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart);
-void HAL_UART_RxHalfCpltCallback(UART_HandleTypeDef *huart);
-void HAL_UART_ErrorCallback(UART_HandleTypeDef *huart);
-void HAL_UART_AbortCpltCallback(UART_HandleTypeDef *huart);
-void HAL_UART_AbortTransmitCpltCallback(UART_HandleTypeDef *huart);
-void HAL_UART_AbortReceiveCpltCallback(UART_HandleTypeDef *huart);
-
-void HAL_UARTEx_RxEventCallback(UART_HandleTypeDef *huart, uint16_t Size);
-
-/**
-  * @}
-  */
-
-/** @addtogroup UART_Exported_Functions_Group3
-  * @{
-  */
-/* Peripheral Control functions  ************************************************/
-HAL_StatusTypeDef HAL_LIN_SendBreak(UART_HandleTypeDef *huart);
-HAL_StatusTypeDef HAL_MultiProcessor_EnterMuteMode(UART_HandleTypeDef *huart);
-HAL_StatusTypeDef HAL_MultiProcessor_ExitMuteMode(UART_HandleTypeDef *huart);
-HAL_StatusTypeDef HAL_HalfDuplex_EnableTransmitter(UART_HandleTypeDef *huart);
-HAL_StatusTypeDef HAL_HalfDuplex_EnableReceiver(UART_HandleTypeDef *huart);
-/**
-  * @}
-  */
-
-/** @addtogroup UART_Exported_Functions_Group4
-  * @{
-  */
-/* Peripheral State functions  **************************************************/
-HAL_UART_StateTypeDef HAL_UART_GetState(UART_HandleTypeDef *huart);
-uint32_t              HAL_UART_GetError(UART_HandleTypeDef *huart);
-/**
-  * @}
-  */
-
-/**
-  * @}
-  */
-/* Private types -------------------------------------------------------------*/
-/* Private variables ---------------------------------------------------------*/
-/* Private constants ---------------------------------------------------------*/
-/** @defgroup UART_Private_Constants UART Private Constants
-  * @{
-  */
-/** @brief UART interruptions flag mask
-  *
-  */
-#define UART_IT_MASK                     0x0000FFFFU
-
-#define UART_CR1_REG_INDEX               1U
-#define UART_CR2_REG_INDEX               2U
-#define UART_CR3_REG_INDEX               3U
-/**
-  * @}
-  */
-
-/* Private macros ------------------------------------------------------------*/
-/** @defgroup UART_Private_Macros UART Private Macros
-  * @{
-  */
-#define IS_UART_WORD_LENGTH(LENGTH) (((LENGTH) == UART_WORDLENGTH_8B) || \
-                                     ((LENGTH) == UART_WORDLENGTH_9B))
-#define IS_UART_LIN_WORD_LENGTH(LENGTH) (((LENGTH) == UART_WORDLENGTH_8B))
-#define IS_UART_STOPBITS(STOPBITS) (((STOPBITS) == UART_STOPBITS_1) || \
-                                    ((STOPBITS) == UART_STOPBITS_2))
-#define IS_UART_PARITY(PARITY) (((PARITY) == UART_PARITY_NONE) || \
-                                ((PARITY) == UART_PARITY_EVEN) || \
-                                ((PARITY) == UART_PARITY_ODD))
-#define IS_UART_HARDWARE_FLOW_CONTROL(CONTROL)\
-                              (((CONTROL) == UART_HWCONTROL_NONE) || \
-                               ((CONTROL) == UART_HWCONTROL_RTS) || \
-                               ((CONTROL) == UART_HWCONTROL_CTS) || \
-                               ((CONTROL) == UART_HWCONTROL_RTS_CTS))
-#define IS_UART_MODE(MODE) ((((MODE) & 0x0000FFF3U) == 0x00U) && ((MODE) != 0x00U))
-#define IS_UART_STATE(STATE) (((STATE) == UART_STATE_DISABLE) || \
-                              ((STATE) == UART_STATE_ENABLE))
-#define IS_UART_OVERSAMPLING(SAMPLING) (((SAMPLING) == UART_OVERSAMPLING_16) || \
-                                        ((SAMPLING) == UART_OVERSAMPLING_8))
-#define IS_UART_LIN_OVERSAMPLING(SAMPLING) (((SAMPLING) == UART_OVERSAMPLING_16))
-#define IS_UART_LIN_BREAK_DETECT_LENGTH(LENGTH) (((LENGTH) == UART_LINBREAKDETECTLENGTH_10B) || \
-                                                 ((LENGTH) == UART_LINBREAKDETECTLENGTH_11B))
-#define IS_UART_WAKEUPMETHOD(WAKEUP) (((WAKEUP) == UART_WAKEUPMETHOD_IDLELINE) || \
-                                      ((WAKEUP) == UART_WAKEUPMETHOD_ADDRESSMARK))
-#define IS_UART_BAUDRATE(BAUDRATE) ((BAUDRATE) <= 10500000U)
-#define IS_UART_ADDRESS(ADDRESS) ((ADDRESS) <= 0x0FU)
-
-#define UART_DIV_SAMPLING16(_PCLK_, _BAUD_)            ((uint32_t)((((uint64_t)(_PCLK_))*25U)/(4U*((uint64_t)(_BAUD_)))))
-#define UART_DIVMANT_SAMPLING16(_PCLK_, _BAUD_)        (UART_DIV_SAMPLING16((_PCLK_), (_BAUD_))/100U)
-#define UART_DIVFRAQ_SAMPLING16(_PCLK_, _BAUD_)        ((((UART_DIV_SAMPLING16((_PCLK_), (_BAUD_)) - (UART_DIVMANT_SAMPLING16((_PCLK_), (_BAUD_)) * 100U)) * 16U)\
-                                                         + 50U) / 100U)
-/* UART BRR = mantissa + overflow + fraction
-            = (UART DIVMANT << 4) + (UART DIVFRAQ & 0xF0) + (UART DIVFRAQ & 0x0FU) */
-#define UART_BRR_SAMPLING16(_PCLK_, _BAUD_)            ((UART_DIVMANT_SAMPLING16((_PCLK_), (_BAUD_)) << 4U) + \
-                                                        (UART_DIVFRAQ_SAMPLING16((_PCLK_), (_BAUD_)) & 0xF0U) + \
-                                                        (UART_DIVFRAQ_SAMPLING16((_PCLK_), (_BAUD_)) & 0x0FU))
-
-#define UART_DIV_SAMPLING8(_PCLK_, _BAUD_)             ((uint32_t)((((uint64_t)(_PCLK_))*25U)/(2U*((uint64_t)(_BAUD_)))))
-#define UART_DIVMANT_SAMPLING8(_PCLK_, _BAUD_)         (UART_DIV_SAMPLING8((_PCLK_), (_BAUD_))/100U)
-#define UART_DIVFRAQ_SAMPLING8(_PCLK_, _BAUD_)         ((((UART_DIV_SAMPLING8((_PCLK_), (_BAUD_)) - (UART_DIVMANT_SAMPLING8((_PCLK_), (_BAUD_)) * 100U)) * 8U)\
-                                                         + 50U) / 100U)
-/* UART BRR = mantissa + overflow + fraction
-            = (UART DIVMANT << 4) + ((UART DIVFRAQ & 0xF8) << 1) + (UART DIVFRAQ & 0x07U) */
-#define UART_BRR_SAMPLING8(_PCLK_, _BAUD_)             ((UART_DIVMANT_SAMPLING8((_PCLK_), (_BAUD_)) << 4U) + \
-                                                        ((UART_DIVFRAQ_SAMPLING8((_PCLK_), (_BAUD_)) & 0xF8U) << 1U) + \
-                                                        (UART_DIVFRAQ_SAMPLING8((_PCLK_), (_BAUD_)) & 0x07U))
-
-/**
-  * @}
-  */
-
-/* Private functions ---------------------------------------------------------*/
-/** @defgroup UART_Private_Functions UART Private Functions
-  * @{
-  */
-
-HAL_StatusTypeDef UART_Start_Receive_IT(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size);
-HAL_StatusTypeDef UART_Start_Receive_DMA(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size);
-
-/**
-  * @}
-  */
-
-/**
-  * @}
-  */
-
-/**
-  * @}
-  */
-
-#ifdef __cplusplus
-}
-#endif
-
-#endif /* __STM32F4xx_HAL_UART_H */
-
-/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

+ 330 - 0
stm32workspace/dosimeter-fw/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_crc.c

@@ -0,0 +1,330 @@
+/**
+  ******************************************************************************
+  * @file    stm32f4xx_hal_crc.c
+  * @author  MCD Application Team
+  * @brief   CRC HAL module driver.
+  *          This file provides firmware functions to manage the following
+  *          functionalities of the Cyclic Redundancy Check (CRC) peripheral:
+  *           + Initialization and de-initialization functions
+  *           + Peripheral Control functions
+  *           + Peripheral State functions
+  *
+  @verbatim
+ ===============================================================================
+                     ##### How to use this driver #####
+ ===============================================================================
+    [..]
+         (+) Enable CRC AHB clock using __HAL_RCC_CRC_CLK_ENABLE();
+         (+) Initialize CRC calculator
+             (++) specify generating polynomial (peripheral default or non-default one)
+             (++) specify initialization value (peripheral default or non-default one)
+             (++) specify input data format
+             (++) specify input or output data inversion mode if any
+         (+) Use HAL_CRC_Accumulate() function to compute the CRC value of the
+             input data buffer starting with the previously computed CRC as
+             initialization value
+         (+) Use HAL_CRC_Calculate() function to compute the CRC value of the
+             input data buffer starting with the defined initialization value
+             (default or non-default) to initiate CRC calculation
+
+  @endverbatim
+  ******************************************************************************
+  * @attention
+  *
+  * <h2><center>&copy; Copyright (c) 2016 STMicroelectronics.
+  * All rights reserved.</center></h2>
+  *
+  * This software component is licensed by ST under BSD 3-Clause license,
+  * the "License"; You may not use this file except in compliance with the
+  * License. You may obtain a copy of the License at:
+  *                        opensource.org/licenses/BSD-3-Clause
+  *
+  ******************************************************************************
+  */
+
+/* Includes ------------------------------------------------------------------*/
+#include "stm32f4xx_hal.h"
+
+/** @addtogroup STM32F4xx_HAL_Driver
+  * @{
+  */
+
+/** @defgroup CRC CRC
+  * @brief CRC HAL module driver.
+  * @{
+  */
+
+#ifdef HAL_CRC_MODULE_ENABLED
+
+/* Private typedef -----------------------------------------------------------*/
+/* Private define ------------------------------------------------------------*/
+/* Private macro -------------------------------------------------------------*/
+/* Private variables ---------------------------------------------------------*/
+/* Private function prototypes -----------------------------------------------*/
+
+/* Exported functions --------------------------------------------------------*/
+
+/** @defgroup CRC_Exported_Functions CRC Exported Functions
+  * @{
+  */
+
+/** @defgroup CRC_Exported_Functions_Group1 Initialization and de-initialization functions
+  *  @brief    Initialization and Configuration functions.
+  *
+@verbatim
+ ===============================================================================
+            ##### Initialization and de-initialization functions #####
+ ===============================================================================
+    [..]  This section provides functions allowing to:
+      (+) Initialize the CRC according to the specified parameters
+          in the CRC_InitTypeDef and create the associated handle
+      (+) DeInitialize the CRC peripheral
+      (+) Initialize the CRC MSP (MCU Specific Package)
+      (+) DeInitialize the CRC MSP
+
+@endverbatim
+  * @{
+  */
+
+/**
+  * @brief  Initialize the CRC according to the specified
+  *         parameters in the CRC_InitTypeDef and create the associated handle.
+  * @param  hcrc CRC handle
+  * @retval HAL status
+  */
+HAL_StatusTypeDef HAL_CRC_Init(CRC_HandleTypeDef *hcrc)
+{
+  /* Check the CRC handle allocation */
+  if (hcrc == NULL)
+  {
+    return HAL_ERROR;
+  }
+
+  /* Check the parameters */
+  assert_param(IS_CRC_ALL_INSTANCE(hcrc->Instance));
+
+  if (hcrc->State == HAL_CRC_STATE_RESET)
+  {
+    /* Allocate lock resource and initialize it */
+    hcrc->Lock = HAL_UNLOCKED;
+    /* Init the low level hardware */
+    HAL_CRC_MspInit(hcrc);
+  }
+
+  /* Change CRC peripheral state */
+  hcrc->State = HAL_CRC_STATE_READY;
+
+  /* Return function status */
+  return HAL_OK;
+}
+
+/**
+  * @brief  DeInitialize the CRC peripheral.
+  * @param  hcrc CRC handle
+  * @retval HAL status
+  */
+HAL_StatusTypeDef HAL_CRC_DeInit(CRC_HandleTypeDef *hcrc)
+{
+  /* Check the CRC handle allocation */
+  if (hcrc == NULL)
+  {
+    return HAL_ERROR;
+  }
+
+  /* Check the parameters */
+  assert_param(IS_CRC_ALL_INSTANCE(hcrc->Instance));
+
+  /* Check the CRC peripheral state */
+  if (hcrc->State == HAL_CRC_STATE_BUSY)
+  {
+    return HAL_BUSY;
+  }
+
+  /* Change CRC peripheral state */
+  hcrc->State = HAL_CRC_STATE_BUSY;
+
+  /* Reset CRC calculation unit */
+  __HAL_CRC_DR_RESET(hcrc);
+
+  /* Reset IDR register content */
+  CLEAR_BIT(hcrc->Instance->IDR, CRC_IDR_IDR);
+
+  /* DeInit the low level hardware */
+  HAL_CRC_MspDeInit(hcrc);
+
+  /* Change CRC peripheral state */
+  hcrc->State = HAL_CRC_STATE_RESET;
+
+  /* Process unlocked */
+  __HAL_UNLOCK(hcrc);
+
+  /* Return function status */
+  return HAL_OK;
+}
+
+/**
+  * @brief  Initializes the CRC MSP.
+  * @param  hcrc CRC handle
+  * @retval None
+  */
+__weak void HAL_CRC_MspInit(CRC_HandleTypeDef *hcrc)
+{
+  /* Prevent unused argument(s) compilation warning */
+  UNUSED(hcrc);
+
+  /* NOTE : This function should not be modified, when the callback is needed,
+            the HAL_CRC_MspInit can be implemented in the user file
+   */
+}
+
+/**
+  * @brief  DeInitialize the CRC MSP.
+  * @param  hcrc CRC handle
+  * @retval None
+  */
+__weak void HAL_CRC_MspDeInit(CRC_HandleTypeDef *hcrc)
+{
+  /* Prevent unused argument(s) compilation warning */
+  UNUSED(hcrc);
+
+  /* NOTE : This function should not be modified, when the callback is needed,
+            the HAL_CRC_MspDeInit can be implemented in the user file
+   */
+}
+
+/**
+  * @}
+  */
+
+/** @defgroup CRC_Exported_Functions_Group2 Peripheral Control functions
+  *  @brief    management functions.
+  *
+@verbatim
+ ===============================================================================
+                      ##### Peripheral Control functions #####
+ ===============================================================================
+    [..]  This section provides functions allowing to:
+      (+) compute the 32-bit CRC value of a 32-bit data buffer
+          using combination of the previous CRC value and the new one.
+
+       [..]  or
+
+      (+) compute the 32-bit CRC value of a 32-bit data buffer
+          independently of the previous CRC value.
+
+@endverbatim
+  * @{
+  */
+
+/**
+  * @brief  Compute the 32-bit CRC value of a 32-bit data buffer
+  *         starting with the previously computed CRC as initialization value.
+  * @param  hcrc CRC handle
+  * @param  pBuffer pointer to the input data buffer.
+  * @param  BufferLength input data buffer length (number of uint32_t words).
+  * @retval uint32_t CRC (returned value LSBs for CRC shorter than 32 bits)
+  */
+uint32_t HAL_CRC_Accumulate(CRC_HandleTypeDef *hcrc, uint32_t pBuffer[], uint32_t BufferLength)
+{
+  uint32_t index;      /* CRC input data buffer index */
+  uint32_t temp = 0U;  /* CRC output (read from hcrc->Instance->DR register) */
+
+  /* Change CRC peripheral state */
+  hcrc->State = HAL_CRC_STATE_BUSY;
+
+  /* Enter Data to the CRC calculator */
+  for (index = 0U; index < BufferLength; index++)
+  {
+    hcrc->Instance->DR = pBuffer[index];
+  }
+  temp = hcrc->Instance->DR;
+
+  /* Change CRC peripheral state */
+  hcrc->State = HAL_CRC_STATE_READY;
+
+  /* Return the CRC computed value */
+  return temp;
+}
+
+/**
+  * @brief  Compute the 32-bit CRC value of a 32-bit data buffer
+  *         starting with hcrc->Instance->INIT as initialization value.
+  * @param  hcrc CRC handle
+  * @param  pBuffer pointer to the input data buffer.
+  * @param  BufferLength input data buffer length (number of uint32_t words).
+  * @retval uint32_t CRC (returned value LSBs for CRC shorter than 32 bits)
+  */
+uint32_t HAL_CRC_Calculate(CRC_HandleTypeDef *hcrc, uint32_t pBuffer[], uint32_t BufferLength)
+{
+  uint32_t index;      /* CRC input data buffer index */
+  uint32_t temp = 0U;  /* CRC output (read from hcrc->Instance->DR register) */
+
+  /* Change CRC peripheral state */
+  hcrc->State = HAL_CRC_STATE_BUSY;
+
+  /* Reset CRC Calculation Unit (hcrc->Instance->INIT is
+  *  written in hcrc->Instance->DR) */
+  __HAL_CRC_DR_RESET(hcrc);
+
+  /* Enter 32-bit input data to the CRC calculator */
+  for (index = 0U; index < BufferLength; index++)
+  {
+    hcrc->Instance->DR = pBuffer[index];
+  }
+  temp = hcrc->Instance->DR;
+
+  /* Change CRC peripheral state */
+  hcrc->State = HAL_CRC_STATE_READY;
+
+  /* Return the CRC computed value */
+  return temp;
+}
+
+/**
+  * @}
+  */
+
+/** @defgroup CRC_Exported_Functions_Group3 Peripheral State functions
+  *  @brief    Peripheral State functions.
+  *
+@verbatim
+ ===============================================================================
+                      ##### Peripheral State functions #####
+ ===============================================================================
+    [..]
+    This subsection permits to get in run-time the status of the peripheral.
+
+@endverbatim
+  * @{
+  */
+
+/**
+  * @brief  Return the CRC handle state.
+  * @param  hcrc CRC handle
+  * @retval HAL state
+  */
+HAL_CRC_StateTypeDef HAL_CRC_GetState(CRC_HandleTypeDef *hcrc)
+{
+  /* Return CRC handle state */
+  return hcrc->State;
+}
+
+/**
+  * @}
+  */
+
+/**
+  * @}
+  */
+
+
+#endif /* HAL_CRC_MODULE_ENABLED */
+/**
+  * @}
+  */
+
+/**
+  * @}
+  */
+
+/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

+ 0 - 3741
stm32workspace/dosimeter-fw/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_uart.c

@@ -1,3741 +0,0 @@
-/**
-  ******************************************************************************
-  * @file    stm32f4xx_hal_uart.c
-  * @author  MCD Application Team
-  * @brief   UART HAL module driver.
-  *          This file provides firmware functions to manage the following
-  *          functionalities of the Universal Asynchronous Receiver Transmitter Peripheral (UART).
-  *           + Initialization and de-initialization functions
-  *           + IO operation functions
-  *           + Peripheral Control functions
-  *           + Peripheral State and Errors functions
-  @verbatim
-  ==============================================================================
-                        ##### How to use this driver #####
-  ==============================================================================
-  [..]
-    The UART HAL driver can be used as follows:
-
-    (#) Declare a UART_HandleTypeDef handle structure (eg. UART_HandleTypeDef huart).
-    (#) Initialize the UART low level resources by implementing the HAL_UART_MspInit() API:
-        (##) Enable the USARTx interface clock.
-        (##) UART pins configuration:
-            (+++) Enable the clock for the UART GPIOs.
-            (+++) Configure the UART TX/RX pins as alternate function pull-up.
-        (##) NVIC configuration if you need to use interrupt process (HAL_UART_Transmit_IT()
-             and HAL_UART_Receive_IT() APIs):
-            (+++) Configure the USARTx interrupt priority.
-            (+++) Enable the NVIC USART IRQ handle.
-        (##) DMA Configuration if you need to use DMA process (HAL_UART_Transmit_DMA()
-             and HAL_UART_Receive_DMA() APIs):
-            (+++) Declare a DMA handle structure for the Tx/Rx stream.
-            (+++) Enable the DMAx interface clock.
-            (+++) Configure the declared DMA handle structure with the required
-                  Tx/Rx parameters.
-            (+++) Configure the DMA Tx/Rx stream.
-            (+++) Associate the initialized DMA handle to the UART DMA Tx/Rx handle.
-            (+++) Configure the priority and enable the NVIC for the transfer complete
-                  interrupt on the DMA Tx/Rx stream.
-            (+++) Configure the USARTx interrupt priority and enable the NVIC USART IRQ handle
-                  (used for last byte sending completion detection in DMA non circular mode)
-
-    (#) Program the Baud Rate, Word Length, Stop Bit, Parity, Hardware
-        flow control and Mode(Receiver/Transmitter) in the huart Init structure.
-
-    (#) For the UART asynchronous mode, initialize the UART registers by calling
-        the HAL_UART_Init() API.
-
-    (#) For the UART Half duplex mode, initialize the UART registers by calling
-        the HAL_HalfDuplex_Init() API.
-
-    (#) For the LIN mode, initialize the UART registers by calling the HAL_LIN_Init() API.
-
-    (#) For the Multi-Processor mode, initialize the UART registers by calling
-        the HAL_MultiProcessor_Init() API.
-
-     [..]
-       (@) The specific UART interrupts (Transmission complete interrupt,
-            RXNE interrupt and Error Interrupts) will be managed using the macros
-            __HAL_UART_ENABLE_IT() and __HAL_UART_DISABLE_IT() inside the transmit
-            and receive process.
-
-     [..]
-       (@) These APIs (HAL_UART_Init() and HAL_HalfDuplex_Init()) configure also the
-            low level Hardware GPIO, CLOCK, CORTEX...etc) by calling the customized
-            HAL_UART_MspInit() API.
-
-    ##### Callback registration #####
-    ==================================
-
-    [..]
-    The compilation define USE_HAL_UART_REGISTER_CALLBACKS when set to 1
-    allows the user to configure dynamically the driver callbacks.
-
-    [..]
-    Use Function HAL_UART_RegisterCallback() to register a user callback.
-    Function HAL_UART_RegisterCallback() allows to register following callbacks:
-    (+) TxHalfCpltCallback        : Tx Half Complete Callback.
-    (+) TxCpltCallback            : Tx Complete Callback.
-    (+) RxHalfCpltCallback        : Rx Half Complete Callback.
-    (+) RxCpltCallback            : Rx Complete Callback.
-    (+) ErrorCallback             : Error Callback.
-    (+) AbortCpltCallback         : Abort Complete Callback.
-    (+) AbortTransmitCpltCallback : Abort Transmit Complete Callback.
-    (+) AbortReceiveCpltCallback  : Abort Receive Complete Callback.
-    (+) MspInitCallback           : UART MspInit.
-    (+) MspDeInitCallback         : UART MspDeInit.
-    This function takes as parameters the HAL peripheral handle, the Callback ID
-    and a pointer to the user callback function.
-
-    [..]
-    Use function HAL_UART_UnRegisterCallback() to reset a callback to the default
-    weak (surcharged) function.
-    HAL_UART_UnRegisterCallback() takes as parameters the HAL peripheral handle,
-    and the Callback ID.
-    This function allows to reset following callbacks:
-    (+) TxHalfCpltCallback        : Tx Half Complete Callback.
-    (+) TxCpltCallback            : Tx Complete Callback.
-    (+) RxHalfCpltCallback        : Rx Half Complete Callback.
-    (+) RxCpltCallback            : Rx Complete Callback.
-    (+) ErrorCallback             : Error Callback.
-    (+) AbortCpltCallback         : Abort Complete Callback.
-    (+) AbortTransmitCpltCallback : Abort Transmit Complete Callback.
-    (+) AbortReceiveCpltCallback  : Abort Receive Complete Callback.
-    (+) MspInitCallback           : UART MspInit.
-    (+) MspDeInitCallback         : UART MspDeInit.
-
-    [..]
-    For specific callback RxEventCallback, use dedicated registration/reset functions:
-    respectively HAL_UART_RegisterRxEventCallback() , HAL_UART_UnRegisterRxEventCallback().
-
-    [..]
-    By default, after the HAL_UART_Init() and when the state is HAL_UART_STATE_RESET
-    all callbacks are set to the corresponding weak (surcharged) functions:
-    examples HAL_UART_TxCpltCallback(), HAL_UART_RxHalfCpltCallback().
-    Exception done for MspInit and MspDeInit functions that are respectively
-    reset to the legacy weak (surcharged) functions in the HAL_UART_Init()
-    and HAL_UART_DeInit() only when these callbacks are null (not registered beforehand).
-    If not, MspInit or MspDeInit are not null, the HAL_UART_Init() and HAL_UART_DeInit()
-    keep and use the user MspInit/MspDeInit callbacks (registered beforehand).
-
-    [..]
-    Callbacks can be registered/unregistered in HAL_UART_STATE_READY state only.
-    Exception done MspInit/MspDeInit that can be registered/unregistered
-    in HAL_UART_STATE_READY or HAL_UART_STATE_RESET state, thus registered (user)
-    MspInit/DeInit callbacks can be used during the Init/DeInit.
-    In that case first register the MspInit/MspDeInit user callbacks
-    using HAL_UART_RegisterCallback() before calling HAL_UART_DeInit()
-    or HAL_UART_Init() function.
-
-    [..]
-    When The compilation define USE_HAL_UART_REGISTER_CALLBACKS is set to 0 or
-    not defined, the callback registration feature is not available
-    and weak (surcharged) callbacks are used.
-
-     [..]
-        Three operation modes are available within this driver :
-
-     *** Polling mode IO operation ***
-     =================================
-     [..]
-       (+) Send an amount of data in blocking mode using HAL_UART_Transmit()
-       (+) Receive an amount of data in blocking mode using HAL_UART_Receive()
-
-     *** Interrupt mode IO operation ***
-     ===================================
-     [..]
-       (+) Send an amount of data in non blocking mode using HAL_UART_Transmit_IT()
-       (+) At transmission end of transfer HAL_UART_TxCpltCallback is executed and user can
-            add his own code by customization of function pointer HAL_UART_TxCpltCallback
-       (+) Receive an amount of data in non blocking mode using HAL_UART_Receive_IT()
-       (+) At reception end of transfer HAL_UART_RxCpltCallback is executed and user can
-            add his own code by customization of function pointer HAL_UART_RxCpltCallback
-       (+) In case of transfer Error, HAL_UART_ErrorCallback() function is executed and user can
-            add his own code by customization of function pointer HAL_UART_ErrorCallback
-
-     *** DMA mode IO operation ***
-     ==============================
-     [..]
-       (+) Send an amount of data in non blocking mode (DMA) using HAL_UART_Transmit_DMA()
-       (+) At transmission end of half transfer HAL_UART_TxHalfCpltCallback is executed and user can
-            add his own code by customization of function pointer HAL_UART_TxHalfCpltCallback
-       (+) At transmission end of transfer HAL_UART_TxCpltCallback is executed and user can
-            add his own code by customization of function pointer HAL_UART_TxCpltCallback
-       (+) Receive an amount of data in non blocking mode (DMA) using HAL_UART_Receive_DMA()
-       (+) At reception end of half transfer HAL_UART_RxHalfCpltCallback is executed and user can
-            add his own code by customization of function pointer HAL_UART_RxHalfCpltCallback
-       (+) At reception end of transfer HAL_UART_RxCpltCallback is executed and user can
-            add his own code by customization of function pointer HAL_UART_RxCpltCallback
-       (+) In case of transfer Error, HAL_UART_ErrorCallback() function is executed and user can
-            add his own code by customization of function pointer HAL_UART_ErrorCallback
-       (+) Pause the DMA Transfer using HAL_UART_DMAPause()
-       (+) Resume the DMA Transfer using HAL_UART_DMAResume()
-       (+) Stop the DMA Transfer using HAL_UART_DMAStop()
-
-
-    [..] This subsection also provides a set of additional functions providing enhanced reception
-    services to user. (For example, these functions allow application to handle use cases
-    where number of data to be received is unknown).
-
-    (#) Compared to standard reception services which only consider number of received
-        data elements as reception completion criteria, these functions also consider additional events
-        as triggers for updating reception status to caller :
-       (+) Detection of inactivity period (RX line has not been active for a given period).
-          (++) RX inactivity detected by IDLE event, i.e. RX line has been in idle state (normally high state)
-               for 1 frame time, after last received byte.
-
-    (#) There are two mode of transfer:
-       (+) Blocking mode: The reception is performed in polling mode, until either expected number of data is received,
-           or till IDLE event occurs. Reception is handled only during function execution.
-           When function exits, no data reception could occur. HAL status and number of actually received data elements,
-           are returned by function after finishing transfer.
-       (+) Non-Blocking mode: The reception is performed using Interrupts or DMA.
-           These API's return the HAL status.
-           The end of the data processing will be indicated through the
-           dedicated UART IRQ when using Interrupt mode or the DMA IRQ when using DMA mode.
-           The HAL_UARTEx_RxEventCallback() user callback will be executed during Receive process
-           The HAL_UART_ErrorCallback()user callback will be executed when a reception error is detected.
-
-    (#) Blocking mode API:
-        (+) HAL_UARTEx_ReceiveToIdle()
-
-    (#) Non-Blocking mode API with Interrupt:
-        (+) HAL_UARTEx_ReceiveToIdle_IT()
-
-    (#) Non-Blocking mode API with DMA:
-        (+) HAL_UARTEx_ReceiveToIdle_DMA()
-
-
-     *** UART HAL driver macros list ***
-     =============================================
-     [..]
-       Below the list of most used macros in UART HAL driver.
-
-      (+) __HAL_UART_ENABLE: Enable the UART peripheral
-      (+) __HAL_UART_DISABLE: Disable the UART peripheral
-      (+) __HAL_UART_GET_FLAG : Check whether the specified UART flag is set or not
-      (+) __HAL_UART_CLEAR_FLAG : Clear the specified UART pending flag
-      (+) __HAL_UART_ENABLE_IT: Enable the specified UART interrupt
-      (+) __HAL_UART_DISABLE_IT: Disable the specified UART interrupt
-      (+) __HAL_UART_GET_IT_SOURCE: Check whether the specified UART interrupt has occurred or not
-
-     [..]
-       (@) You can refer to the UART HAL driver header file for more useful macros
-
-  @endverbatim
-     [..]
-       (@) Additional remark: If the parity is enabled, then the MSB bit of the data written
-           in the data register is transmitted but is changed by the parity bit.
-           Depending on the frame length defined by the M bit (8-bits or 9-bits),
-           the possible UART frame formats are as listed in the following table:
-    +-------------------------------------------------------------+
-    |   M bit |  PCE bit  |            UART frame                 |
-    |---------------------|---------------------------------------|
-    |    0    |    0      |    | SB | 8 bit data | STB |          |
-    |---------|-----------|---------------------------------------|
-    |    0    |    1      |    | SB | 7 bit data | PB | STB |     |
-    |---------|-----------|---------------------------------------|
-    |    1    |    0      |    | SB | 9 bit data | STB |          |
-    |---------|-----------|---------------------------------------|
-    |    1    |    1      |    | SB | 8 bit data | PB | STB |     |
-    +-------------------------------------------------------------+
-  ******************************************************************************
-  * @attention
-  *
-  * <h2><center>&copy; Copyright (c) 2016 STMicroelectronics.
-  * All rights reserved.</center></h2>
-  *
-  * This software component is licensed by ST under BSD 3-Clause license,
-  * the "License"; You may not use this file except in compliance with the
-  * License. You may obtain a copy of the License at:
-  *                        opensource.org/licenses/BSD-3-Clause
-  *
-  ******************************************************************************
-  */
-
-/* Includes ------------------------------------------------------------------*/
-#include "stm32f4xx_hal.h"
-
-/** @addtogroup STM32F4xx_HAL_Driver
-  * @{
-  */
-
-/** @defgroup UART UART
-  * @brief HAL UART module driver
-  * @{
-  */
-#ifdef HAL_UART_MODULE_ENABLED
-
-/* Private typedef -----------------------------------------------------------*/
-/* Private define ------------------------------------------------------------*/
-/** @addtogroup UART_Private_Constants
-  * @{
-  */
-/**
-  * @}
-  */
-/* Private macro -------------------------------------------------------------*/
-/* Private variables ---------------------------------------------------------*/
-/* Private function prototypes -----------------------------------------------*/
-/** @addtogroup UART_Private_Functions  UART Private Functions
-  * @{
-  */
-
-#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
-void UART_InitCallbacksToDefault(UART_HandleTypeDef *huart);
-#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
-static void UART_EndTxTransfer(UART_HandleTypeDef *huart);
-static void UART_EndRxTransfer(UART_HandleTypeDef *huart);
-static void UART_DMATransmitCplt(DMA_HandleTypeDef *hdma);
-static void UART_DMAReceiveCplt(DMA_HandleTypeDef *hdma);
-static void UART_DMATxHalfCplt(DMA_HandleTypeDef *hdma);
-static void UART_DMARxHalfCplt(DMA_HandleTypeDef *hdma);
-static void UART_DMAError(DMA_HandleTypeDef *hdma);
-static void UART_DMAAbortOnError(DMA_HandleTypeDef *hdma);
-static void UART_DMATxAbortCallback(DMA_HandleTypeDef *hdma);
-static void UART_DMARxAbortCallback(DMA_HandleTypeDef *hdma);
-static void UART_DMATxOnlyAbortCallback(DMA_HandleTypeDef *hdma);
-static void UART_DMARxOnlyAbortCallback(DMA_HandleTypeDef *hdma);
-static HAL_StatusTypeDef UART_Transmit_IT(UART_HandleTypeDef *huart);
-static HAL_StatusTypeDef UART_EndTransmit_IT(UART_HandleTypeDef *huart);
-static HAL_StatusTypeDef UART_Receive_IT(UART_HandleTypeDef *huart);
-static HAL_StatusTypeDef UART_WaitOnFlagUntilTimeout(UART_HandleTypeDef *huart, uint32_t Flag, FlagStatus Status,
-                                                     uint32_t Tickstart, uint32_t Timeout);
-static void UART_SetConfig(UART_HandleTypeDef *huart);
-
-/**
-  * @}
-  */
-
-/* Exported functions ---------------------------------------------------------*/
-/** @defgroup UART_Exported_Functions UART Exported Functions
-  * @{
-  */
-
-/** @defgroup UART_Exported_Functions_Group1 Initialization and de-initialization functions
-  *  @brief    Initialization and Configuration functions
-  *
-@verbatim
- ===============================================================================
-            ##### Initialization and Configuration functions #####
- ===============================================================================
-    [..]
-    This subsection provides a set of functions allowing to initialize the USARTx or the UARTy
-    in asynchronous mode.
-      (+) For the asynchronous mode only these parameters can be configured:
-        (++) Baud Rate
-        (++) Word Length
-        (++) Stop Bit
-        (++) Parity: If the parity is enabled, then the MSB bit of the data written
-             in the data register is transmitted but is changed by the parity bit.
-             Depending on the frame length defined by the M bit (8-bits or 9-bits),
-             please refer to Reference manual for possible UART frame formats.
-        (++) Hardware flow control
-        (++) Receiver/transmitter modes
-        (++) Over Sampling Method
-    [..]
-    The HAL_UART_Init(), HAL_HalfDuplex_Init(), HAL_LIN_Init() and HAL_MultiProcessor_Init() APIs
-    follow respectively the UART asynchronous, UART Half duplex, LIN and Multi-Processor configuration
-    procedures (details for the procedures are available in reference manual
-    (RM0430 for STM32F4X3xx MCUs and RM0402 for STM32F412xx MCUs
-     RM0383 for STM32F411xC/E MCUs and RM0401 for STM32F410xx MCUs
-     RM0090 for STM32F4X5xx/STM32F4X7xx/STM32F429xx/STM32F439xx MCUs
-     RM0390 for STM32F446xx MCUs and RM0386 for STM32F469xx/STM32F479xx MCUs)).
-
-@endverbatim
-  * @{
-  */
-
-/**
-  * @brief  Initializes the UART mode according to the specified parameters in
-  *         the UART_InitTypeDef and create the associated handle.
-  * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
-  *                the configuration information for the specified UART module.
-  * @retval HAL status
-  */
-HAL_StatusTypeDef HAL_UART_Init(UART_HandleTypeDef *huart)
-{
-  /* Check the UART handle allocation */
-  if (huart == NULL)
-  {
-    return HAL_ERROR;
-  }
-
-  /* Check the parameters */
-  if (huart->Init.HwFlowCtl != UART_HWCONTROL_NONE)
-  {
-    /* The hardware flow control is available only for USART1, USART2, USART3 and USART6.
-       Except for STM32F446xx devices, that is available for USART1, USART2, USART3, USART6, UART4 and UART5.
-    */
-    assert_param(IS_UART_HWFLOW_INSTANCE(huart->Instance));
-    assert_param(IS_UART_HARDWARE_FLOW_CONTROL(huart->Init.HwFlowCtl));
-  }
-  else
-  {
-    assert_param(IS_UART_INSTANCE(huart->Instance));
-  }
-  assert_param(IS_UART_WORD_LENGTH(huart->Init.WordLength));
-  assert_param(IS_UART_OVERSAMPLING(huart->Init.OverSampling));
-
-  if (huart->gState == HAL_UART_STATE_RESET)
-  {
-    /* Allocate lock resource and initialize it */
-    huart->Lock = HAL_UNLOCKED;
-
-#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
-    UART_InitCallbacksToDefault(huart);
-
-    if (huart->MspInitCallback == NULL)
-    {
-      huart->MspInitCallback = HAL_UART_MspInit;
-    }
-
-    /* Init the low level hardware */
-    huart->MspInitCallback(huart);
-#else
-    /* Init the low level hardware : GPIO, CLOCK */
-    HAL_UART_MspInit(huart);
-#endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */
-  }
-
-  huart->gState = HAL_UART_STATE_BUSY;
-
-  /* Disable the peripheral */
-  __HAL_UART_DISABLE(huart);
-
-  /* Set the UART Communication parameters */
-  UART_SetConfig(huart);
-
-  /* In asynchronous mode, the following bits must be kept cleared:
-     - LINEN and CLKEN bits in the USART_CR2 register,
-     - SCEN, HDSEL and IREN  bits in the USART_CR3 register.*/
-  CLEAR_BIT(huart->Instance->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN));
-  CLEAR_BIT(huart->Instance->CR3, (USART_CR3_SCEN | USART_CR3_HDSEL | USART_CR3_IREN));
-
-  /* Enable the peripheral */
-  __HAL_UART_ENABLE(huart);
-
-  /* Initialize the UART state */
-  huart->ErrorCode = HAL_UART_ERROR_NONE;
-  huart->gState = HAL_UART_STATE_READY;
-  huart->RxState = HAL_UART_STATE_READY;
-
-  return HAL_OK;
-}
-
-/**
-  * @brief  Initializes the half-duplex mode according to the specified
-  *         parameters in the UART_InitTypeDef and create the associated handle.
-  * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
-  *                the configuration information for the specified UART module.
-  * @retval HAL status
-  */
-HAL_StatusTypeDef HAL_HalfDuplex_Init(UART_HandleTypeDef *huart)
-{
-  /* Check the UART handle allocation */
-  if (huart == NULL)
-  {
-    return HAL_ERROR;
-  }
-
-  /* Check the parameters */
-  assert_param(IS_UART_HALFDUPLEX_INSTANCE(huart->Instance));
-  assert_param(IS_UART_WORD_LENGTH(huart->Init.WordLength));
-  assert_param(IS_UART_OVERSAMPLING(huart->Init.OverSampling));
-
-  if (huart->gState == HAL_UART_STATE_RESET)
-  {
-    /* Allocate lock resource and initialize it */
-    huart->Lock = HAL_UNLOCKED;
-
-#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
-    UART_InitCallbacksToDefault(huart);
-
-    if (huart->MspInitCallback == NULL)
-    {
-      huart->MspInitCallback = HAL_UART_MspInit;
-    }
-
-    /* Init the low level hardware */
-    huart->MspInitCallback(huart);
-#else
-    /* Init the low level hardware : GPIO, CLOCK */
-    HAL_UART_MspInit(huart);
-#endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */
-  }
-
-  huart->gState = HAL_UART_STATE_BUSY;
-
-  /* Disable the peripheral */
-  __HAL_UART_DISABLE(huart);
-
-  /* Set the UART Communication parameters */
-  UART_SetConfig(huart);
-
-  /* In half-duplex mode, the following bits must be kept cleared:
-     - LINEN and CLKEN bits in the USART_CR2 register,
-     - SCEN and IREN bits in the USART_CR3 register.*/
-  CLEAR_BIT(huart->Instance->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN));
-  CLEAR_BIT(huart->Instance->CR3, (USART_CR3_IREN | USART_CR3_SCEN));
-
-  /* Enable the Half-Duplex mode by setting the HDSEL bit in the CR3 register */
-  SET_BIT(huart->Instance->CR3, USART_CR3_HDSEL);
-
-  /* Enable the peripheral */
-  __HAL_UART_ENABLE(huart);
-
-  /* Initialize the UART state*/
-  huart->ErrorCode = HAL_UART_ERROR_NONE;
-  huart->gState = HAL_UART_STATE_READY;
-  huart->RxState = HAL_UART_STATE_READY;
-
-  return HAL_OK;
-}
-
-/**
-  * @brief  Initializes the LIN mode according to the specified
-  *         parameters in the UART_InitTypeDef and create the associated handle.
-  * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
-  *                the configuration information for the specified UART module.
-  * @param  BreakDetectLength Specifies the LIN break detection length.
-  *         This parameter can be one of the following values:
-  *            @arg UART_LINBREAKDETECTLENGTH_10B: 10-bit break detection
-  *            @arg UART_LINBREAKDETECTLENGTH_11B: 11-bit break detection
-  * @retval HAL status
-  */
-HAL_StatusTypeDef HAL_LIN_Init(UART_HandleTypeDef *huart, uint32_t BreakDetectLength)
-{
-  /* Check the UART handle allocation */
-  if (huart == NULL)
-  {
-    return HAL_ERROR;
-  }
-
-  /* Check the LIN UART instance */
-  assert_param(IS_UART_LIN_INSTANCE(huart->Instance));
-
-  /* Check the Break detection length parameter */
-  assert_param(IS_UART_LIN_BREAK_DETECT_LENGTH(BreakDetectLength));
-  assert_param(IS_UART_LIN_WORD_LENGTH(huart->Init.WordLength));
-  assert_param(IS_UART_LIN_OVERSAMPLING(huart->Init.OverSampling));
-
-  if (huart->gState == HAL_UART_STATE_RESET)
-  {
-    /* Allocate lock resource and initialize it */
-    huart->Lock = HAL_UNLOCKED;
-
-#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
-    UART_InitCallbacksToDefault(huart);
-
-    if (huart->MspInitCallback == NULL)
-    {
-      huart->MspInitCallback = HAL_UART_MspInit;
-    }
-
-    /* Init the low level hardware */
-    huart->MspInitCallback(huart);
-#else
-    /* Init the low level hardware : GPIO, CLOCK */
-    HAL_UART_MspInit(huart);
-#endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */
-  }
-
-  huart->gState = HAL_UART_STATE_BUSY;
-
-  /* Disable the peripheral */
-  __HAL_UART_DISABLE(huart);
-
-  /* Set the UART Communication parameters */
-  UART_SetConfig(huart);
-
-  /* In LIN mode, the following bits must be kept cleared:
-     - CLKEN bits in the USART_CR2 register,
-     - SCEN, HDSEL and IREN bits in the USART_CR3 register.*/
-  CLEAR_BIT(huart->Instance->CR2, (USART_CR2_CLKEN));
-  CLEAR_BIT(huart->Instance->CR3, (USART_CR3_HDSEL | USART_CR3_IREN | USART_CR3_SCEN));
-
-  /* Enable the LIN mode by setting the LINEN bit in the CR2 register */
-  SET_BIT(huart->Instance->CR2, USART_CR2_LINEN);
-
-  /* Set the USART LIN Break detection length. */
-  CLEAR_BIT(huart->Instance->CR2, USART_CR2_LBDL);
-  SET_BIT(huart->Instance->CR2, BreakDetectLength);
-
-  /* Enable the peripheral */
-  __HAL_UART_ENABLE(huart);
-
-  /* Initialize the UART state*/
-  huart->ErrorCode = HAL_UART_ERROR_NONE;
-  huart->gState = HAL_UART_STATE_READY;
-  huart->RxState = HAL_UART_STATE_READY;
-
-  return HAL_OK;
-}
-
-/**
-  * @brief  Initializes the Multi-Processor mode according to the specified
-  *         parameters in the UART_InitTypeDef and create the associated handle.
-  * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
-  *                the configuration information for the specified UART module.
-  * @param  Address USART address
-  * @param  WakeUpMethod specifies the USART wake-up method.
-  *         This parameter can be one of the following values:
-  *            @arg UART_WAKEUPMETHOD_IDLELINE: Wake-up by an idle line detection
-  *            @arg UART_WAKEUPMETHOD_ADDRESSMARK: Wake-up by an address mark
-  * @retval HAL status
-  */
-HAL_StatusTypeDef HAL_MultiProcessor_Init(UART_HandleTypeDef *huart, uint8_t Address, uint32_t WakeUpMethod)
-{
-  /* Check the UART handle allocation */
-  if (huart == NULL)
-  {
-    return HAL_ERROR;
-  }
-
-  /* Check the parameters */
-  assert_param(IS_UART_INSTANCE(huart->Instance));
-
-  /* Check the Address & wake up method parameters */
-  assert_param(IS_UART_WAKEUPMETHOD(WakeUpMethod));
-  assert_param(IS_UART_ADDRESS(Address));
-  assert_param(IS_UART_WORD_LENGTH(huart->Init.WordLength));
-  assert_param(IS_UART_OVERSAMPLING(huart->Init.OverSampling));
-
-  if (huart->gState == HAL_UART_STATE_RESET)
-  {
-    /* Allocate lock resource and initialize it */
-    huart->Lock = HAL_UNLOCKED;
-
-#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
-    UART_InitCallbacksToDefault(huart);
-
-    if (huart->MspInitCallback == NULL)
-    {
-      huart->MspInitCallback = HAL_UART_MspInit;
-    }
-
-    /* Init the low level hardware */
-    huart->MspInitCallback(huart);
-#else
-    /* Init the low level hardware : GPIO, CLOCK */
-    HAL_UART_MspInit(huart);
-#endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */
-  }
-
-  huart->gState = HAL_UART_STATE_BUSY;
-
-  /* Disable the peripheral */
-  __HAL_UART_DISABLE(huart);
-
-  /* Set the UART Communication parameters */
-  UART_SetConfig(huart);
-
-  /* In Multi-Processor mode, the following bits must be kept cleared:
-     - LINEN and CLKEN bits in the USART_CR2 register,
-     - SCEN, HDSEL and IREN  bits in the USART_CR3 register */
-  CLEAR_BIT(huart->Instance->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN));
-  CLEAR_BIT(huart->Instance->CR3, (USART_CR3_SCEN | USART_CR3_HDSEL | USART_CR3_IREN));
-
-  /* Set the USART address node */
-  CLEAR_BIT(huart->Instance->CR2, USART_CR2_ADD);
-  SET_BIT(huart->Instance->CR2, Address);
-
-  /* Set the wake up method by setting the WAKE bit in the CR1 register */
-  CLEAR_BIT(huart->Instance->CR1, USART_CR1_WAKE);
-  SET_BIT(huart->Instance->CR1, WakeUpMethod);
-
-  /* Enable the peripheral */
-  __HAL_UART_ENABLE(huart);
-
-  /* Initialize the UART state */
-  huart->ErrorCode = HAL_UART_ERROR_NONE;
-  huart->gState = HAL_UART_STATE_READY;
-  huart->RxState = HAL_UART_STATE_READY;
-
-  return HAL_OK;
-}
-
-/**
-  * @brief  DeInitializes the UART peripheral.
-  * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
-  *                the configuration information for the specified UART module.
-  * @retval HAL status
-  */
-HAL_StatusTypeDef HAL_UART_DeInit(UART_HandleTypeDef *huart)
-{
-  /* Check the UART handle allocation */
-  if (huart == NULL)
-  {
-    return HAL_ERROR;
-  }
-
-  /* Check the parameters */
-  assert_param(IS_UART_INSTANCE(huart->Instance));
-
-  huart->gState = HAL_UART_STATE_BUSY;
-
-  /* Disable the Peripheral */
-  __HAL_UART_DISABLE(huart);
-
-#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
-  if (huart->MspDeInitCallback == NULL)
-  {
-    huart->MspDeInitCallback = HAL_UART_MspDeInit;
-  }
-  /* DeInit the low level hardware */
-  huart->MspDeInitCallback(huart);
-#else
-  /* DeInit the low level hardware */
-  HAL_UART_MspDeInit(huart);
-#endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */
-
-  huart->ErrorCode = HAL_UART_ERROR_NONE;
-  huart->gState = HAL_UART_STATE_RESET;
-  huart->RxState = HAL_UART_STATE_RESET;
-  huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
-
-  /* Process Unlock */
-  __HAL_UNLOCK(huart);
-
-  return HAL_OK;
-}
-
-/**
-  * @brief  UART MSP Init.
-  * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
-  *                the configuration information for the specified UART module.
-  * @retval None
-  */
-__weak void HAL_UART_MspInit(UART_HandleTypeDef *huart)
-{
-  /* Prevent unused argument(s) compilation warning */
-  UNUSED(huart);
-  /* NOTE: This function should not be modified, when the callback is needed,
-           the HAL_UART_MspInit could be implemented in the user file
-   */
-}
-
-/**
-  * @brief  UART MSP DeInit.
-  * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
-  *                the configuration information for the specified UART module.
-  * @retval None
-  */
-__weak void HAL_UART_MspDeInit(UART_HandleTypeDef *huart)
-{
-  /* Prevent unused argument(s) compilation warning */
-  UNUSED(huart);
-  /* NOTE: This function should not be modified, when the callback is needed,
-           the HAL_UART_MspDeInit could be implemented in the user file
-   */
-}
-
-#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
-/**
-  * @brief  Register a User UART Callback
-  *         To be used instead of the weak predefined callback
-  * @param  huart uart handle
-  * @param  CallbackID ID of the callback to be registered
-  *         This parameter can be one of the following values:
-  *           @arg @ref HAL_UART_TX_HALFCOMPLETE_CB_ID Tx Half Complete Callback ID
-  *           @arg @ref HAL_UART_TX_COMPLETE_CB_ID Tx Complete Callback ID
-  *           @arg @ref HAL_UART_RX_HALFCOMPLETE_CB_ID Rx Half Complete Callback ID
-  *           @arg @ref HAL_UART_RX_COMPLETE_CB_ID Rx Complete Callback ID
-  *           @arg @ref HAL_UART_ERROR_CB_ID Error Callback ID
-  *           @arg @ref HAL_UART_ABORT_COMPLETE_CB_ID Abort Complete Callback ID
-  *           @arg @ref HAL_UART_ABORT_TRANSMIT_COMPLETE_CB_ID Abort Transmit Complete Callback ID
-  *           @arg @ref HAL_UART_ABORT_RECEIVE_COMPLETE_CB_ID Abort Receive Complete Callback ID
-  *           @arg @ref HAL_UART_MSPINIT_CB_ID MspInit Callback ID
-  *           @arg @ref HAL_UART_MSPDEINIT_CB_ID MspDeInit Callback ID
-  * @param  pCallback pointer to the Callback function
-  * @retval HAL status
-  */
-HAL_StatusTypeDef HAL_UART_RegisterCallback(UART_HandleTypeDef *huart, HAL_UART_CallbackIDTypeDef CallbackID,
-                                            pUART_CallbackTypeDef pCallback)
-{
-  HAL_StatusTypeDef status = HAL_OK;
-
-  if (pCallback == NULL)
-  {
-    /* Update the error code */
-    huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK;
-
-    return HAL_ERROR;
-  }
-  /* Process locked */
-  __HAL_LOCK(huart);
-
-  if (huart->gState == HAL_UART_STATE_READY)
-  {
-    switch (CallbackID)
-    {
-      case HAL_UART_TX_HALFCOMPLETE_CB_ID :
-        huart->TxHalfCpltCallback = pCallback;
-        break;
-
-      case HAL_UART_TX_COMPLETE_CB_ID :
-        huart->TxCpltCallback = pCallback;
-        break;
-
-      case HAL_UART_RX_HALFCOMPLETE_CB_ID :
-        huart->RxHalfCpltCallback = pCallback;
-        break;
-
-      case HAL_UART_RX_COMPLETE_CB_ID :
-        huart->RxCpltCallback = pCallback;
-        break;
-
-      case HAL_UART_ERROR_CB_ID :
-        huart->ErrorCallback = pCallback;
-        break;
-
-      case HAL_UART_ABORT_COMPLETE_CB_ID :
-        huart->AbortCpltCallback = pCallback;
-        break;
-
-      case HAL_UART_ABORT_TRANSMIT_COMPLETE_CB_ID :
-        huart->AbortTransmitCpltCallback = pCallback;
-        break;
-
-      case HAL_UART_ABORT_RECEIVE_COMPLETE_CB_ID :
-        huart->AbortReceiveCpltCallback = pCallback;
-        break;
-
-      case HAL_UART_MSPINIT_CB_ID :
-        huart->MspInitCallback = pCallback;
-        break;
-
-      case HAL_UART_MSPDEINIT_CB_ID :
-        huart->MspDeInitCallback = pCallback;
-        break;
-
-      default :
-        /* Update the error code */
-        huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK;
-
-        /* Return error status */
-        status =  HAL_ERROR;
-        break;
-    }
-  }
-  else if (huart->gState == HAL_UART_STATE_RESET)
-  {
-    switch (CallbackID)
-    {
-      case HAL_UART_MSPINIT_CB_ID :
-        huart->MspInitCallback = pCallback;
-        break;
-
-      case HAL_UART_MSPDEINIT_CB_ID :
-        huart->MspDeInitCallback = pCallback;
-        break;
-
-      default :
-        /* Update the error code */
-        huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK;
-
-        /* Return error status */
-        status =  HAL_ERROR;
-        break;
-    }
-  }
-  else
-  {
-    /* Update the error code */
-    huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK;
-
-    /* Return error status */
-    status =  HAL_ERROR;
-  }
-
-  /* Release Lock */
-  __HAL_UNLOCK(huart);
-
-  return status;
-}
-
-/**
-  * @brief  Unregister an UART Callback
-  *         UART callaback is redirected to the weak predefined callback
-  * @param  huart uart handle
-  * @param  CallbackID ID of the callback to be unregistered
-  *         This parameter can be one of the following values:
-  *           @arg @ref HAL_UART_TX_HALFCOMPLETE_CB_ID Tx Half Complete Callback ID
-  *           @arg @ref HAL_UART_TX_COMPLETE_CB_ID Tx Complete Callback ID
-  *           @arg @ref HAL_UART_RX_HALFCOMPLETE_CB_ID Rx Half Complete Callback ID
-  *           @arg @ref HAL_UART_RX_COMPLETE_CB_ID Rx Complete Callback ID
-  *           @arg @ref HAL_UART_ERROR_CB_ID Error Callback ID
-  *           @arg @ref HAL_UART_ABORT_COMPLETE_CB_ID Abort Complete Callback ID
-  *           @arg @ref HAL_UART_ABORT_TRANSMIT_COMPLETE_CB_ID Abort Transmit Complete Callback ID
-  *           @arg @ref HAL_UART_ABORT_RECEIVE_COMPLETE_CB_ID Abort Receive Complete Callback ID
-  *           @arg @ref HAL_UART_MSPINIT_CB_ID MspInit Callback ID
-  *           @arg @ref HAL_UART_MSPDEINIT_CB_ID MspDeInit Callback ID
-  * @retval HAL status
-  */
-HAL_StatusTypeDef HAL_UART_UnRegisterCallback(UART_HandleTypeDef *huart, HAL_UART_CallbackIDTypeDef CallbackID)
-{
-  HAL_StatusTypeDef status = HAL_OK;
-
-  /* Process locked */
-  __HAL_LOCK(huart);
-
-  if (HAL_UART_STATE_READY == huart->gState)
-  {
-    switch (CallbackID)
-    {
-      case HAL_UART_TX_HALFCOMPLETE_CB_ID :
-        huart->TxHalfCpltCallback = HAL_UART_TxHalfCpltCallback;               /* Legacy weak  TxHalfCpltCallback       */
-        break;
-
-      case HAL_UART_TX_COMPLETE_CB_ID :
-        huart->TxCpltCallback = HAL_UART_TxCpltCallback;                       /* Legacy weak TxCpltCallback            */
-        break;
-
-      case HAL_UART_RX_HALFCOMPLETE_CB_ID :
-        huart->RxHalfCpltCallback = HAL_UART_RxHalfCpltCallback;               /* Legacy weak RxHalfCpltCallback        */
-        break;
-
-      case HAL_UART_RX_COMPLETE_CB_ID :
-        huart->RxCpltCallback = HAL_UART_RxCpltCallback;                       /* Legacy weak RxCpltCallback            */
-        break;
-
-      case HAL_UART_ERROR_CB_ID :
-        huart->ErrorCallback = HAL_UART_ErrorCallback;                         /* Legacy weak ErrorCallback             */
-        break;
-
-      case HAL_UART_ABORT_COMPLETE_CB_ID :
-        huart->AbortCpltCallback = HAL_UART_AbortCpltCallback;                 /* Legacy weak AbortCpltCallback         */
-        break;
-
-      case HAL_UART_ABORT_TRANSMIT_COMPLETE_CB_ID :
-        huart->AbortTransmitCpltCallback = HAL_UART_AbortTransmitCpltCallback; /* Legacy weak AbortTransmitCpltCallback */
-        break;
-
-      case HAL_UART_ABORT_RECEIVE_COMPLETE_CB_ID :
-        huart->AbortReceiveCpltCallback = HAL_UART_AbortReceiveCpltCallback;   /* Legacy weak AbortReceiveCpltCallback  */
-        break;
-
-      case HAL_UART_MSPINIT_CB_ID :
-        huart->MspInitCallback = HAL_UART_MspInit;                             /* Legacy weak MspInitCallback           */
-        break;
-
-      case HAL_UART_MSPDEINIT_CB_ID :
-        huart->MspDeInitCallback = HAL_UART_MspDeInit;                         /* Legacy weak MspDeInitCallback         */
-        break;
-
-      default :
-        /* Update the error code */
-        huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK;
-
-        /* Return error status */
-        status =  HAL_ERROR;
-        break;
-    }
-  }
-  else if (HAL_UART_STATE_RESET == huart->gState)
-  {
-    switch (CallbackID)
-    {
-      case HAL_UART_MSPINIT_CB_ID :
-        huart->MspInitCallback = HAL_UART_MspInit;
-        break;
-
-      case HAL_UART_MSPDEINIT_CB_ID :
-        huart->MspDeInitCallback = HAL_UART_MspDeInit;
-        break;
-
-      default :
-        /* Update the error code */
-        huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK;
-
-        /* Return error status */
-        status =  HAL_ERROR;
-        break;
-    }
-  }
-  else
-  {
-    /* Update the error code */
-    huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK;
-
-    /* Return error status */
-    status =  HAL_ERROR;
-  }
-
-  /* Release Lock */
-  __HAL_UNLOCK(huart);
-
-  return status;
-}
-
-/**
-  * @brief  Register a User UART Rx Event Callback
-  *         To be used instead of the weak predefined callback
-  * @param  huart     Uart handle
-  * @param  pCallback Pointer to the Rx Event Callback function
-  * @retval HAL status
-  */
-HAL_StatusTypeDef HAL_UART_RegisterRxEventCallback(UART_HandleTypeDef *huart, pUART_RxEventCallbackTypeDef pCallback)
-{
-  HAL_StatusTypeDef status = HAL_OK;
-
-  if (pCallback == NULL)
-  {
-    huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK;
-
-    return HAL_ERROR;
-  }
-
-  /* Process locked */
-  __HAL_LOCK(huart);
-
-  if (huart->gState == HAL_UART_STATE_READY)
-  {
-    huart->RxEventCallback = pCallback;
-  }
-  else
-  {
-    huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK;
-
-    status =  HAL_ERROR;
-  }
-
-  /* Release Lock */
-  __HAL_UNLOCK(huart);
-
-  return status;
-}
-
-/**
-  * @brief  UnRegister the UART Rx Event Callback
-  *         UART Rx Event Callback is redirected to the weak HAL_UARTEx_RxEventCallback() predefined callback
-  * @param  huart     Uart handle
-  * @retval HAL status
-  */
-HAL_StatusTypeDef HAL_UART_UnRegisterRxEventCallback(UART_HandleTypeDef *huart)
-{
-  HAL_StatusTypeDef status = HAL_OK;
-
-  /* Process locked */
-  __HAL_LOCK(huart);
-
-  if (huart->gState == HAL_UART_STATE_READY)
-  {
-    huart->RxEventCallback = HAL_UARTEx_RxEventCallback; /* Legacy weak UART Rx Event Callback  */
-  }
-  else
-  {
-    huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK;
-
-    status =  HAL_ERROR;
-  }
-
-  /* Release Lock */
-  __HAL_UNLOCK(huart);
-  return status;
-}
-#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
-
-/**
-  * @}
-  */
-
-/** @defgroup UART_Exported_Functions_Group2 IO operation functions
-  *  @brief UART Transmit and Receive functions
-  *
-@verbatim
- ===============================================================================
-                      ##### IO operation functions #####
- ===============================================================================
-    This subsection provides a set of functions allowing to manage the UART asynchronous
-    and Half duplex data transfers.
-
-    (#) There are two modes of transfer:
-       (+) Blocking mode: The communication is performed in polling mode.
-           The HAL status of all data processing is returned by the same function
-           after finishing transfer.
-       (+) Non-Blocking mode: The communication is performed using Interrupts
-           or DMA, these API's return the HAL status.
-           The end of the data processing will be indicated through the
-           dedicated UART IRQ when using Interrupt mode or the DMA IRQ when
-           using DMA mode.
-           The HAL_UART_TxCpltCallback(), HAL_UART_RxCpltCallback() user callbacks
-           will be executed respectively at the end of the transmit or receive process
-           The HAL_UART_ErrorCallback()user callback will be executed when a communication error is detected.
-
-    (#) Blocking mode API's are :
-        (+) HAL_UART_Transmit()
-        (+) HAL_UART_Receive()
-
-    (#) Non-Blocking mode API's with Interrupt are :
-        (+) HAL_UART_Transmit_IT()
-        (+) HAL_UART_Receive_IT()
-        (+) HAL_UART_IRQHandler()
-
-    (#) Non-Blocking mode API's with DMA are :
-        (+) HAL_UART_Transmit_DMA()
-        (+) HAL_UART_Receive_DMA()
-        (+) HAL_UART_DMAPause()
-        (+) HAL_UART_DMAResume()
-        (+) HAL_UART_DMAStop()
-
-    (#) A set of Transfer Complete Callbacks are provided in Non_Blocking mode:
-        (+) HAL_UART_TxHalfCpltCallback()
-        (+) HAL_UART_TxCpltCallback()
-        (+) HAL_UART_RxHalfCpltCallback()
-        (+) HAL_UART_RxCpltCallback()
-        (+) HAL_UART_ErrorCallback()
-
-    (#) Non-Blocking mode transfers could be aborted using Abort API's :
-        (+) HAL_UART_Abort()
-        (+) HAL_UART_AbortTransmit()
-        (+) HAL_UART_AbortReceive()
-        (+) HAL_UART_Abort_IT()
-        (+) HAL_UART_AbortTransmit_IT()
-        (+) HAL_UART_AbortReceive_IT()
-
-    (#) For Abort services based on interrupts (HAL_UART_Abortxxx_IT), a set of Abort Complete Callbacks are provided:
-        (+) HAL_UART_AbortCpltCallback()
-        (+) HAL_UART_AbortTransmitCpltCallback()
-        (+) HAL_UART_AbortReceiveCpltCallback()
-
-    (#) A Rx Event Reception Callback (Rx event notification) is available for Non_Blocking modes of enhanced reception services:
-        (+) HAL_UARTEx_RxEventCallback()
-
-    (#) In Non-Blocking mode transfers, possible errors are split into 2 categories.
-        Errors are handled as follows :
-       (+) Error is considered as Recoverable and non blocking : Transfer could go till end, but error severity is
-           to be evaluated by user : this concerns Frame Error, Parity Error or Noise Error in Interrupt mode reception .
-           Received character is then retrieved and stored in Rx buffer, Error code is set to allow user to identify error type,
-           and HAL_UART_ErrorCallback() user callback is executed. Transfer is kept ongoing on UART side.
-           If user wants to abort it, Abort services should be called by user.
-       (+) Error is considered as Blocking : Transfer could not be completed properly and is aborted.
-           This concerns Overrun Error In Interrupt mode reception and all errors in DMA mode.
-           Error code is set to allow user to identify error type, and HAL_UART_ErrorCallback() user callback is executed.
-
-    -@- In the Half duplex communication, it is forbidden to run the transmit
-        and receive process in parallel, the UART state HAL_UART_STATE_BUSY_TX_RX can't be useful.
-
-@endverbatim
-  * @{
-  */
-
-/**
-  * @brief  Sends an amount of data in blocking mode.
-  * @note   When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
-  *         the sent data is handled as a set of u16. In this case, Size must indicate the number
-  *         of u16 provided through pData.
-  * @param  huart Pointer to a UART_HandleTypeDef structure that contains
-  *               the configuration information for the specified UART module.
-  * @param  pData Pointer to data buffer (u8 or u16 data elements).
-  * @param  Size  Amount of data elements (u8 or u16) to be sent
-  * @param  Timeout Timeout duration
-  * @retval HAL status
-  */
-HAL_StatusTypeDef HAL_UART_Transmit(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size, uint32_t Timeout)
-{
-  uint8_t  *pdata8bits;
-  uint16_t *pdata16bits;
-  uint32_t tickstart = 0U;
-
-  /* Check that a Tx process is not already ongoing */
-  if (huart->gState == HAL_UART_STATE_READY)
-  {
-    if ((pData == NULL) || (Size == 0U))
-    {
-      return  HAL_ERROR;
-    }
-
-    /* Process Locked */
-    __HAL_LOCK(huart);
-
-    huart->ErrorCode = HAL_UART_ERROR_NONE;
-    huart->gState = HAL_UART_STATE_BUSY_TX;
-
-    /* Init tickstart for timeout management */
-    tickstart = HAL_GetTick();
-
-    huart->TxXferSize = Size;
-    huart->TxXferCount = Size;
-
-    /* In case of 9bits/No Parity transfer, pData needs to be handled as a uint16_t pointer */
-    if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE))
-    {
-      pdata8bits  = NULL;
-      pdata16bits = (uint16_t *) pData;
-    }
-    else
-    {
-      pdata8bits  = pData;
-      pdata16bits = NULL;
-    }
-
-    /* Process Unlocked */
-    __HAL_UNLOCK(huart);
-
-    while (huart->TxXferCount > 0U)
-    {
-      if (UART_WaitOnFlagUntilTimeout(huart, UART_FLAG_TXE, RESET, tickstart, Timeout) != HAL_OK)
-      {
-        return HAL_TIMEOUT;
-      }
-      if (pdata8bits == NULL)
-      {
-        huart->Instance->DR = (uint16_t)(*pdata16bits & 0x01FFU);
-        pdata16bits++;
-      }
-      else
-      {
-        huart->Instance->DR = (uint8_t)(*pdata8bits & 0xFFU);
-        pdata8bits++;
-      }
-      huart->TxXferCount--;
-    }
-
-    if (UART_WaitOnFlagUntilTimeout(huart, UART_FLAG_TC, RESET, tickstart, Timeout) != HAL_OK)
-    {
-      return HAL_TIMEOUT;
-    }
-
-    /* At end of Tx process, restore huart->gState to Ready */
-    huart->gState = HAL_UART_STATE_READY;
-
-    return HAL_OK;
-  }
-  else
-  {
-    return HAL_BUSY;
-  }
-}
-
-/**
-  * @brief  Receives an amount of data in blocking mode.
-  * @note   When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
-  *         the received data is handled as a set of u16. In this case, Size must indicate the number
-  *         of u16 available through pData.
-  * @param  huart Pointer to a UART_HandleTypeDef structure that contains
-  *               the configuration information for the specified UART module.
-  * @param  pData Pointer to data buffer (u8 or u16 data elements).
-  * @param  Size  Amount of data elements (u8 or u16) to be received.
-  * @param  Timeout Timeout duration
-  * @retval HAL status
-  */
-HAL_StatusTypeDef HAL_UART_Receive(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size, uint32_t Timeout)
-{
-  uint8_t  *pdata8bits;
-  uint16_t *pdata16bits;
-  uint32_t tickstart = 0U;
-
-  /* Check that a Rx process is not already ongoing */
-  if (huart->RxState == HAL_UART_STATE_READY)
-  {
-    if ((pData == NULL) || (Size == 0U))
-    {
-      return  HAL_ERROR;
-    }
-
-    /* Process Locked */
-    __HAL_LOCK(huart);
-
-    huart->ErrorCode = HAL_UART_ERROR_NONE;
-    huart->RxState = HAL_UART_STATE_BUSY_RX;
-    huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
-
-    /* Init tickstart for timeout management */
-    tickstart = HAL_GetTick();
-
-    huart->RxXferSize = Size;
-    huart->RxXferCount = Size;
-
-    /* In case of 9bits/No Parity transfer, pRxData needs to be handled as a uint16_t pointer */
-    if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE))
-    {
-      pdata8bits  = NULL;
-      pdata16bits = (uint16_t *) pData;
-    }
-    else
-    {
-      pdata8bits  = pData;
-      pdata16bits = NULL;
-    }
-
-    /* Process Unlocked */
-    __HAL_UNLOCK(huart);
-
-    /* Check the remain data to be received */
-    while (huart->RxXferCount > 0U)
-    {
-      if (UART_WaitOnFlagUntilTimeout(huart, UART_FLAG_RXNE, RESET, tickstart, Timeout) != HAL_OK)
-      {
-        return HAL_TIMEOUT;
-      }
-      if (pdata8bits == NULL)
-      {
-        *pdata16bits = (uint16_t)(huart->Instance->DR & 0x01FF);
-        pdata16bits++;
-      }
-      else
-      {
-        if ((huart->Init.WordLength == UART_WORDLENGTH_9B) || ((huart->Init.WordLength == UART_WORDLENGTH_8B) && (huart->Init.Parity == UART_PARITY_NONE)))
-        {
-          *pdata8bits = (uint8_t)(huart->Instance->DR & (uint8_t)0x00FF);
-        }
-        else
-        {
-          *pdata8bits = (uint8_t)(huart->Instance->DR & (uint8_t)0x007F);
-        }
-        pdata8bits++;
-      }
-      huart->RxXferCount--;
-    }
-
-    /* At end of Rx process, restore huart->RxState to Ready */
-    huart->RxState = HAL_UART_STATE_READY;
-
-    return HAL_OK;
-  }
-  else
-  {
-    return HAL_BUSY;
-  }
-}
-
-/**
-  * @brief  Sends an amount of data in non blocking mode.
-  * @note   When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
-  *         the sent data is handled as a set of u16. In this case, Size must indicate the number
-  *         of u16 provided through pData.
-  * @param  huart Pointer to a UART_HandleTypeDef structure that contains
-  *               the configuration information for the specified UART module.
-  * @param  pData Pointer to data buffer (u8 or u16 data elements).
-  * @param  Size  Amount of data elements (u8 or u16) to be sent
-  * @retval HAL status
-  */
-HAL_StatusTypeDef HAL_UART_Transmit_IT(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)
-{
-  /* Check that a Tx process is not already ongoing */
-  if (huart->gState == HAL_UART_STATE_READY)
-  {
-    if ((pData == NULL) || (Size == 0U))
-    {
-      return HAL_ERROR;
-    }
-
-    /* Process Locked */
-    __HAL_LOCK(huart);
-
-    huart->pTxBuffPtr = pData;
-    huart->TxXferSize = Size;
-    huart->TxXferCount = Size;
-
-    huart->ErrorCode = HAL_UART_ERROR_NONE;
-    huart->gState = HAL_UART_STATE_BUSY_TX;
-
-    /* Process Unlocked */
-    __HAL_UNLOCK(huart);
-
-    /* Enable the UART Transmit data register empty Interrupt */
-    __HAL_UART_ENABLE_IT(huart, UART_IT_TXE);
-
-    return HAL_OK;
-  }
-  else
-  {
-    return HAL_BUSY;
-  }
-}
-
-/**
-  * @brief  Receives an amount of data in non blocking mode.
-  * @note   When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
-  *         the received data is handled as a set of u16. In this case, Size must indicate the number
-  *         of u16 available through pData.
-  * @param  huart Pointer to a UART_HandleTypeDef structure that contains
-  *               the configuration information for the specified UART module.
-  * @param  pData Pointer to data buffer (u8 or u16 data elements).
-  * @param  Size  Amount of data elements (u8 or u16) to be received.
-  * @retval HAL status
-  */
-HAL_StatusTypeDef HAL_UART_Receive_IT(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)
-{
-  /* Check that a Rx process is not already ongoing */
-  if (huart->RxState == HAL_UART_STATE_READY)
-  {
-    if ((pData == NULL) || (Size == 0U))
-    {
-      return HAL_ERROR;
-    }
-
-    /* Process Locked */
-    __HAL_LOCK(huart);
-
-    /* Set Reception type to Standard reception */
-    huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
-
-    return (UART_Start_Receive_IT(huart, pData, Size));
-  }
-  else
-  {
-    return HAL_BUSY;
-  }
-}
-
-/**
-  * @brief  Sends an amount of data in DMA mode.
-  * @note   When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
-  *         the sent data is handled as a set of u16. In this case, Size must indicate the number
-  *         of u16 provided through pData.
-  * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
-  *                the configuration information for the specified UART module.
-  * @param  pData Pointer to data buffer (u8 or u16 data elements).
-  * @param  Size  Amount of data elements (u8 or u16) to be sent
-  * @retval HAL status
-  */
-HAL_StatusTypeDef HAL_UART_Transmit_DMA(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)
-{
-  uint32_t *tmp;
-
-  /* Check that a Tx process is not already ongoing */
-  if (huart->gState == HAL_UART_STATE_READY)
-  {
-    if ((pData == NULL) || (Size == 0U))
-    {
-      return HAL_ERROR;
-    }
-
-    /* Process Locked */
-    __HAL_LOCK(huart);
-
-    huart->pTxBuffPtr = pData;
-    huart->TxXferSize = Size;
-    huart->TxXferCount = Size;
-
-    huart->ErrorCode = HAL_UART_ERROR_NONE;
-    huart->gState = HAL_UART_STATE_BUSY_TX;
-
-    /* Set the UART DMA transfer complete callback */
-    huart->hdmatx->XferCpltCallback = UART_DMATransmitCplt;
-
-    /* Set the UART DMA Half transfer complete callback */
-    huart->hdmatx->XferHalfCpltCallback = UART_DMATxHalfCplt;
-
-    /* Set the DMA error callback */
-    huart->hdmatx->XferErrorCallback = UART_DMAError;
-
-    /* Set the DMA abort callback */
-    huart->hdmatx->XferAbortCallback = NULL;
-
-    /* Enable the UART transmit DMA stream */
-    tmp = (uint32_t *)&pData;
-    HAL_DMA_Start_IT(huart->hdmatx, *(uint32_t *)tmp, (uint32_t)&huart->Instance->DR, Size);
-
-    /* Clear the TC flag in the SR register by writing 0 to it */
-    __HAL_UART_CLEAR_FLAG(huart, UART_FLAG_TC);
-
-    /* Process Unlocked */
-    __HAL_UNLOCK(huart);
-
-    /* Enable the DMA transfer for transmit request by setting the DMAT bit
-       in the UART CR3 register */
-    ATOMIC_SET_BIT(huart->Instance->CR3, USART_CR3_DMAT);
-
-    return HAL_OK;
-  }
-  else
-  {
-    return HAL_BUSY;
-  }
-}
-
-/**
-  * @brief  Receives an amount of data in DMA mode.
-  * @note   When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
-  *         the received data is handled as a set of u16. In this case, Size must indicate the number
-  *         of u16 available through pData.
-  * @param  huart Pointer to a UART_HandleTypeDef structure that contains
-  *               the configuration information for the specified UART module.
-  * @param  pData Pointer to data buffer (u8 or u16 data elements).
-  * @param  Size  Amount of data elements (u8 or u16) to be received.
-  * @note   When the UART parity is enabled (PCE = 1) the received data contains the parity bit.
-  * @retval HAL status
-  */
-HAL_StatusTypeDef HAL_UART_Receive_DMA(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)
-{
-  /* Check that a Rx process is not already ongoing */
-  if (huart->RxState == HAL_UART_STATE_READY)
-  {
-    if ((pData == NULL) || (Size == 0U))
-    {
-      return HAL_ERROR;
-    }
-
-    /* Process Locked */
-    __HAL_LOCK(huart);
-
-    /* Set Reception type to Standard reception */
-    huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
-
-    return (UART_Start_Receive_DMA(huart, pData, Size));
-  }
-  else
-  {
-    return HAL_BUSY;
-  }
-}
-
-/**
-  * @brief Pauses the DMA Transfer.
-  * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
-  *                the configuration information for the specified UART module.
-  * @retval HAL status
-  */
-HAL_StatusTypeDef HAL_UART_DMAPause(UART_HandleTypeDef *huart)
-{
-  uint32_t dmarequest = 0x00U;
-
-  /* Process Locked */
-  __HAL_LOCK(huart);
-
-  dmarequest = HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT);
-  if ((huart->gState == HAL_UART_STATE_BUSY_TX) && dmarequest)
-  {
-    /* Disable the UART DMA Tx request */
-    ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT);
-  }
-
-  dmarequest = HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR);
-  if ((huart->RxState == HAL_UART_STATE_BUSY_RX) && dmarequest)
-  {
-    /* Disable RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */
-    ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_PEIE);
-    ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
-
-    /* Disable the UART DMA Rx request */
-    ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);
-  }
-
-  /* Process Unlocked */
-  __HAL_UNLOCK(huart);
-
-  return HAL_OK;
-}
-
-/**
-  * @brief Resumes the DMA Transfer.
-  * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
-  *                the configuration information for the specified UART module.
-  * @retval HAL status
-  */
-HAL_StatusTypeDef HAL_UART_DMAResume(UART_HandleTypeDef *huart)
-{
-  /* Process Locked */
-  __HAL_LOCK(huart);
-
-  if (huart->gState == HAL_UART_STATE_BUSY_TX)
-  {
-    /* Enable the UART DMA Tx request */
-    ATOMIC_SET_BIT(huart->Instance->CR3, USART_CR3_DMAT);
-  }
-
-  if (huart->RxState == HAL_UART_STATE_BUSY_RX)
-  {
-    /* Clear the Overrun flag before resuming the Rx transfer*/
-    __HAL_UART_CLEAR_OREFLAG(huart);
-
-    /* Re-enable PE and ERR (Frame error, noise error, overrun error) interrupts */
-    ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_PEIE);
-    ATOMIC_SET_BIT(huart->Instance->CR3, USART_CR3_EIE);
-
-    /* Enable the UART DMA Rx request */
-    ATOMIC_SET_BIT(huart->Instance->CR3, USART_CR3_DMAR);
-  }
-
-  /* Process Unlocked */
-  __HAL_UNLOCK(huart);
-
-  return HAL_OK;
-}
-
-/**
-  * @brief Stops the DMA Transfer.
-  * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
-  *                the configuration information for the specified UART module.
-  * @retval HAL status
-  */
-HAL_StatusTypeDef HAL_UART_DMAStop(UART_HandleTypeDef *huart)
-{
-  uint32_t dmarequest = 0x00U;
-  /* The Lock is not implemented on this API to allow the user application
-     to call the HAL UART API under callbacks HAL_UART_TxCpltCallback() / HAL_UART_RxCpltCallback():
-     when calling HAL_DMA_Abort() API the DMA TX/RX Transfer complete interrupt is generated
-     and the correspond call back is executed HAL_UART_TxCpltCallback() / HAL_UART_RxCpltCallback()
-     */
-
-  /* Stop UART DMA Tx request if ongoing */
-  dmarequest = HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT);
-  if ((huart->gState == HAL_UART_STATE_BUSY_TX) && dmarequest)
-  {
-    ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT);
-
-    /* Abort the UART DMA Tx stream */
-    if (huart->hdmatx != NULL)
-    {
-      HAL_DMA_Abort(huart->hdmatx);
-    }
-    UART_EndTxTransfer(huart);
-  }
-
-  /* Stop UART DMA Rx request if ongoing */
-  dmarequest = HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR);
-  if ((huart->RxState == HAL_UART_STATE_BUSY_RX) && dmarequest)
-  {
-    ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);
-
-    /* Abort the UART DMA Rx stream */
-    if (huart->hdmarx != NULL)
-    {
-      HAL_DMA_Abort(huart->hdmarx);
-    }
-    UART_EndRxTransfer(huart);
-  }
-
-  return HAL_OK;
-}
-
-/**
-  * @brief Receive an amount of data in blocking mode till either the expected number of data is received or an IDLE event occurs.
-  * @note   HAL_OK is returned if reception is completed (expected number of data has been received)
-  *         or if reception is stopped after IDLE event (less than the expected number of data has been received)
-  *         In this case, RxLen output parameter indicates number of data available in reception buffer.
-  * @note   When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M = 01),
-  *         the received data is handled as a set of uint16_t. In this case, Size must indicate the number
-  *         of uint16_t available through pData.
-  * @param huart   UART handle.
-  * @param pData   Pointer to data buffer (uint8_t or uint16_t data elements).
-  * @param Size    Amount of data elements (uint8_t or uint16_t) to be received.
-  * @param RxLen   Number of data elements finally received (could be lower than Size, in case reception ends on IDLE event)
-  * @param Timeout Timeout duration expressed in ms (covers the whole reception sequence).
-  * @retval HAL status
-  */
-HAL_StatusTypeDef HAL_UARTEx_ReceiveToIdle(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size, uint16_t *RxLen,
-                                           uint32_t Timeout)
-{
-  uint8_t  *pdata8bits;
-  uint16_t *pdata16bits;
-  uint32_t tickstart;
-
-  /* Check that a Rx process is not already ongoing */
-  if (huart->RxState == HAL_UART_STATE_READY)
-  {
-    if ((pData == NULL) || (Size == 0U))
-    {
-      return  HAL_ERROR;
-    }
-
-    __HAL_LOCK(huart);
-
-    huart->ErrorCode = HAL_UART_ERROR_NONE;
-    huart->RxState = HAL_UART_STATE_BUSY_RX;
-    huart->ReceptionType = HAL_UART_RECEPTION_TOIDLE;
-
-    /* Init tickstart for timeout management */
-    tickstart = HAL_GetTick();
-
-    huart->RxXferSize  = Size;
-    huart->RxXferCount = Size;
-
-    /* In case of 9bits/No Parity transfer, pRxData needs to be handled as a uint16_t pointer */
-    if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE))
-    {
-      pdata8bits  = NULL;
-      pdata16bits = (uint16_t *) pData;
-    }
-    else
-    {
-      pdata8bits  = pData;
-      pdata16bits = NULL;
-    }
-
-    __HAL_UNLOCK(huart);
-
-    /* Initialize output number of received elements */
-    *RxLen = 0U;
-
-    /* as long as data have to be received */
-    while (huart->RxXferCount > 0U)
-    {
-      /* Check if IDLE flag is set */
-      if (__HAL_UART_GET_FLAG(huart, UART_FLAG_IDLE))
-      {
-        /* Clear IDLE flag in ISR */
-        __HAL_UART_CLEAR_IDLEFLAG(huart);
-
-        /* If Set, but no data ever received, clear flag without exiting loop */
-        /* If Set, and data has already been received, this means Idle Event is valid : End reception */
-        if (*RxLen > 0U)
-        {
-          huart->RxState = HAL_UART_STATE_READY;
-
-          return HAL_OK;
-        }
-      }
-
-      /* Check if RXNE flag is set */
-      if (__HAL_UART_GET_FLAG(huart, UART_FLAG_RXNE))
-      {
-        if (pdata8bits == NULL)
-        {
-          *pdata16bits = (uint16_t)(huart->Instance->DR & (uint16_t)0x01FF);
-          pdata16bits++;
-        }
-        else
-        {
-          if ((huart->Init.WordLength == UART_WORDLENGTH_9B) || ((huart->Init.WordLength == UART_WORDLENGTH_8B) && (huart->Init.Parity == UART_PARITY_NONE)))
-          {
-            *pdata8bits = (uint8_t)(huart->Instance->DR & (uint8_t)0x00FF);
-          }
-          else
-          {
-            *pdata8bits = (uint8_t)(huart->Instance->DR & (uint8_t)0x007F);
-          }
-
-          pdata8bits++;
-        }
-        /* Increment number of received elements */
-        *RxLen += 1U;
-        huart->RxXferCount--;
-      }
-
-      /* Check for the Timeout */
-      if (Timeout != HAL_MAX_DELAY)
-      {
-        if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U))
-        {
-          huart->RxState = HAL_UART_STATE_READY;
-
-          return HAL_TIMEOUT;
-        }
-      }
-    }
-
-    /* Set number of received elements in output parameter : RxLen */
-    *RxLen = huart->RxXferSize - huart->RxXferCount;
-    /* At end of Rx process, restore huart->RxState to Ready */
-    huart->RxState = HAL_UART_STATE_READY;
-
-    return HAL_OK;
-  }
-  else
-  {
-    return HAL_BUSY;
-  }
-}
-
-/**
-  * @brief Receive an amount of data in interrupt mode till either the expected number of data is received or an IDLE event occurs.
-  * @note   Reception is initiated by this function call. Further progress of reception is achieved thanks
-  *         to UART interrupts raised by RXNE and IDLE events. Callback is called at end of reception indicating
-  *         number of received data elements.
-  * @note   When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M = 01),
-  *         the received data is handled as a set of uint16_t. In this case, Size must indicate the number
-  *         of uint16_t available through pData.
-  * @param huart UART handle.
-  * @param pData Pointer to data buffer (uint8_t or uint16_t data elements).
-  * @param Size  Amount of data elements (uint8_t or uint16_t) to be received.
-  * @retval HAL status
-  */
-HAL_StatusTypeDef HAL_UARTEx_ReceiveToIdle_IT(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)
-{
-  HAL_StatusTypeDef status;
-
-  /* Check that a Rx process is not already ongoing */
-  if (huart->RxState == HAL_UART_STATE_READY)
-  {
-    if ((pData == NULL) || (Size == 0U))
-    {
-      return HAL_ERROR;
-    }
-
-    __HAL_LOCK(huart);
-
-    /* Set Reception type to reception till IDLE Event*/
-    huart->ReceptionType = HAL_UART_RECEPTION_TOIDLE;
-
-    status =  UART_Start_Receive_IT(huart, pData, Size);
-
-    /* Check Rx process has been successfully started */
-    if (status == HAL_OK)
-    {
-      if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
-      {
-        __HAL_UART_CLEAR_IDLEFLAG(huart);
-        ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_IDLEIE);
-      }
-      else
-      {
-        /* In case of errors already pending when reception is started,
-           Interrupts may have already been raised and lead to reception abortion.
-           (Overrun error for instance).
-           In such case Reception Type has been reset to HAL_UART_RECEPTION_STANDARD. */
-        status = HAL_ERROR;
-      }
-    }
-
-    return status;
-  }
-  else
-  {
-    return HAL_BUSY;
-  }
-}
-
-/**
-  * @brief Receive an amount of data in DMA mode till either the expected number of data is received or an IDLE event occurs.
-  * @note   Reception is initiated by this function call. Further progress of reception is achieved thanks
-  *         to DMA services, transferring automatically received data elements in user reception buffer and
-  *         calling registered callbacks at half/end of reception. UART IDLE events are also used to consider
-  *         reception phase as ended. In all cases, callback execution will indicate number of received data elements.
-  * @note   When the UART parity is enabled (PCE = 1), the received data contain
-  *         the parity bit (MSB position).
-  * @note   When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M = 01),
-  *         the received data is handled as a set of uint16_t. In this case, Size must indicate the number
-  *         of uint16_t available through pData.
-  * @param huart UART handle.
-  * @param pData Pointer to data buffer (uint8_t or uint16_t data elements).
-  * @param Size  Amount of data elements (uint8_t or uint16_t) to be received.
-  * @retval HAL status
-  */
-HAL_StatusTypeDef HAL_UARTEx_ReceiveToIdle_DMA(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)
-{
-  HAL_StatusTypeDef status;
-
-  /* Check that a Rx process is not already ongoing */
-  if (huart->RxState == HAL_UART_STATE_READY)
-  {
-    if ((pData == NULL) || (Size == 0U))
-    {
-      return HAL_ERROR;
-    }
-
-    __HAL_LOCK(huart);
-
-    /* Set Reception type to reception till IDLE Event*/
-    huart->ReceptionType = HAL_UART_RECEPTION_TOIDLE;
-
-    status =  UART_Start_Receive_DMA(huart, pData, Size);
-
-    /* Check Rx process has been successfully started */
-    if (status == HAL_OK)
-    {
-      if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
-      {
-        __HAL_UART_CLEAR_IDLEFLAG(huart);
-        ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_IDLEIE);
-      }
-      else
-      {
-        /* In case of errors already pending when reception is started,
-           Interrupts may have already been raised and lead to reception abortion.
-           (Overrun error for instance).
-           In such case Reception Type has been reset to HAL_UART_RECEPTION_STANDARD. */
-        status = HAL_ERROR;
-      }
-    }
-
-    return status;
-  }
-  else
-  {
-    return HAL_BUSY;
-  }
-}
-
-/**
-  * @brief  Abort ongoing transfers (blocking mode).
-  * @param  huart UART handle.
-  * @note   This procedure could be used for aborting any ongoing transfer started in Interrupt or DMA mode.
-  *         This procedure performs following operations :
-  *           - Disable UART Interrupts (Tx and Rx)
-  *           - Disable the DMA transfer in the peripheral register (if enabled)
-  *           - Abort DMA transfer by calling HAL_DMA_Abort (in case of transfer in DMA mode)
-  *           - Set handle State to READY
-  * @note   This procedure is executed in blocking mode : when exiting function, Abort is considered as completed.
-  * @retval HAL status
-  */
-HAL_StatusTypeDef HAL_UART_Abort(UART_HandleTypeDef *huart)
-{
-  /* Disable TXEIE, TCIE, RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */
-  ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE | USART_CR1_TXEIE | USART_CR1_TCIE));
-  ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
-
-  /* If Reception till IDLE event was ongoing, disable IDLEIE interrupt */
-  if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
-  {
-    ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_IDLEIE));
-  }
-
-  /* Disable the UART DMA Tx request if enabled */
-  if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT))
-  {
-    ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT);
-
-    /* Abort the UART DMA Tx stream: use blocking DMA Abort API (no callback) */
-    if (huart->hdmatx != NULL)
-    {
-      /* Set the UART DMA Abort callback to Null.
-         No call back execution at end of DMA abort procedure */
-      huart->hdmatx->XferAbortCallback = NULL;
-
-      if (HAL_DMA_Abort(huart->hdmatx) != HAL_OK)
-      {
-        if (HAL_DMA_GetError(huart->hdmatx) == HAL_DMA_ERROR_TIMEOUT)
-        {
-          /* Set error code to DMA */
-          huart->ErrorCode = HAL_UART_ERROR_DMA;
-
-          return HAL_TIMEOUT;
-        }
-      }
-    }
-  }
-
-  /* Disable the UART DMA Rx request if enabled */
-  if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR))
-  {
-    ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);
-
-    /* Abort the UART DMA Rx stream: use blocking DMA Abort API (no callback) */
-    if (huart->hdmarx != NULL)
-    {
-      /* Set the UART DMA Abort callback to Null.
-         No call back execution at end of DMA abort procedure */
-      huart->hdmarx->XferAbortCallback = NULL;
-
-      if (HAL_DMA_Abort(huart->hdmarx) != HAL_OK)
-      {
-        if (HAL_DMA_GetError(huart->hdmarx) == HAL_DMA_ERROR_TIMEOUT)
-        {
-          /* Set error code to DMA */
-          huart->ErrorCode = HAL_UART_ERROR_DMA;
-
-          return HAL_TIMEOUT;
-        }
-      }
-    }
-  }
-
-  /* Reset Tx and Rx transfer counters */
-  huart->TxXferCount = 0x00U;
-  huart->RxXferCount = 0x00U;
-
-  /* Reset ErrorCode */
-  huart->ErrorCode = HAL_UART_ERROR_NONE;
-
-  /* Restore huart->RxState and huart->gState to Ready */
-  huart->RxState = HAL_UART_STATE_READY;
-  huart->gState = HAL_UART_STATE_READY;
-  huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
-
-  return HAL_OK;
-}
-
-/**
-  * @brief  Abort ongoing Transmit transfer (blocking mode).
-  * @param  huart UART handle.
-  * @note   This procedure could be used for aborting any ongoing Tx transfer started in Interrupt or DMA mode.
-  *         This procedure performs following operations :
-  *           - Disable UART Interrupts (Tx)
-  *           - Disable the DMA transfer in the peripheral register (if enabled)
-  *           - Abort DMA transfer by calling HAL_DMA_Abort (in case of transfer in DMA mode)
-  *           - Set handle State to READY
-  * @note   This procedure is executed in blocking mode : when exiting function, Abort is considered as completed.
-  * @retval HAL status
-  */
-HAL_StatusTypeDef HAL_UART_AbortTransmit(UART_HandleTypeDef *huart)
-{
-  /* Disable TXEIE and TCIE interrupts */
-  ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_TXEIE | USART_CR1_TCIE));
-
-  /* Disable the UART DMA Tx request if enabled */
-  if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT))
-  {
-    ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT);
-
-    /* Abort the UART DMA Tx stream : use blocking DMA Abort API (no callback) */
-    if (huart->hdmatx != NULL)
-    {
-      /* Set the UART DMA Abort callback to Null.
-         No call back execution at end of DMA abort procedure */
-      huart->hdmatx->XferAbortCallback = NULL;
-
-      if (HAL_DMA_Abort(huart->hdmatx) != HAL_OK)
-      {
-        if (HAL_DMA_GetError(huart->hdmatx) == HAL_DMA_ERROR_TIMEOUT)
-        {
-          /* Set error code to DMA */
-          huart->ErrorCode = HAL_UART_ERROR_DMA;
-
-          return HAL_TIMEOUT;
-        }
-      }
-    }
-  }
-
-  /* Reset Tx transfer counter */
-  huart->TxXferCount = 0x00U;
-
-  /* Restore huart->gState to Ready */
-  huart->gState = HAL_UART_STATE_READY;
-
-  return HAL_OK;
-}
-
-/**
-  * @brief  Abort ongoing Receive transfer (blocking mode).
-  * @param  huart UART handle.
-  * @note   This procedure could be used for aborting any ongoing Rx transfer started in Interrupt or DMA mode.
-  *         This procedure performs following operations :
-  *           - Disable UART Interrupts (Rx)
-  *           - Disable the DMA transfer in the peripheral register (if enabled)
-  *           - Abort DMA transfer by calling HAL_DMA_Abort (in case of transfer in DMA mode)
-  *           - Set handle State to READY
-  * @note   This procedure is executed in blocking mode : when exiting function, Abort is considered as completed.
-  * @retval HAL status
-  */
-HAL_StatusTypeDef HAL_UART_AbortReceive(UART_HandleTypeDef *huart)
-{
-  /* Disable RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */
-  ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE));
-  ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
-
-  /* If Reception till IDLE event was ongoing, disable IDLEIE interrupt */
-  if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
-  {
-    ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_IDLEIE));
-  }
-
-  /* Disable the UART DMA Rx request if enabled */
-  if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR))
-  {
-    ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);
-
-    /* Abort the UART DMA Rx stream : use blocking DMA Abort API (no callback) */
-    if (huart->hdmarx != NULL)
-    {
-      /* Set the UART DMA Abort callback to Null.
-         No call back execution at end of DMA abort procedure */
-      huart->hdmarx->XferAbortCallback = NULL;
-
-      if (HAL_DMA_Abort(huart->hdmarx) != HAL_OK)
-      {
-        if (HAL_DMA_GetError(huart->hdmarx) == HAL_DMA_ERROR_TIMEOUT)
-        {
-          /* Set error code to DMA */
-          huart->ErrorCode = HAL_UART_ERROR_DMA;
-
-          return HAL_TIMEOUT;
-        }
-      }
-    }
-  }
-
-  /* Reset Rx transfer counter */
-  huart->RxXferCount = 0x00U;
-
-  /* Restore huart->RxState to Ready */
-  huart->RxState = HAL_UART_STATE_READY;
-  huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
-
-  return HAL_OK;
-}
-
-/**
-  * @brief  Abort ongoing transfers (Interrupt mode).
-  * @param  huart UART handle.
-  * @note   This procedure could be used for aborting any ongoing transfer started in Interrupt or DMA mode.
-  *         This procedure performs following operations :
-  *           - Disable UART Interrupts (Tx and Rx)
-  *           - Disable the DMA transfer in the peripheral register (if enabled)
-  *           - Abort DMA transfer by calling HAL_DMA_Abort_IT (in case of transfer in DMA mode)
-  *           - Set handle State to READY
-  *           - At abort completion, call user abort complete callback
-  * @note   This procedure is executed in Interrupt mode, meaning that abort procedure could be
-  *         considered as completed only when user abort complete callback is executed (not when exiting function).
-  * @retval HAL status
-  */
-HAL_StatusTypeDef HAL_UART_Abort_IT(UART_HandleTypeDef *huart)
-{
-  uint32_t AbortCplt = 0x01U;
-
-  /* Disable TXEIE, TCIE, RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */
-  ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE | USART_CR1_TXEIE | USART_CR1_TCIE));
-  ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
-
-  /* If Reception till IDLE event was ongoing, disable IDLEIE interrupt */
-  if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
-  {
-    ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_IDLEIE));
-  }
-
-  /* If DMA Tx and/or DMA Rx Handles are associated to UART Handle, DMA Abort complete callbacks should be initialised
-     before any call to DMA Abort functions */
-  /* DMA Tx Handle is valid */
-  if (huart->hdmatx != NULL)
-  {
-    /* Set DMA Abort Complete callback if UART DMA Tx request if enabled.
-       Otherwise, set it to NULL */
-    if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT))
-    {
-      huart->hdmatx->XferAbortCallback = UART_DMATxAbortCallback;
-    }
-    else
-    {
-      huart->hdmatx->XferAbortCallback = NULL;
-    }
-  }
-  /* DMA Rx Handle is valid */
-  if (huart->hdmarx != NULL)
-  {
-    /* Set DMA Abort Complete callback if UART DMA Rx request if enabled.
-       Otherwise, set it to NULL */
-    if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR))
-    {
-      huart->hdmarx->XferAbortCallback = UART_DMARxAbortCallback;
-    }
-    else
-    {
-      huart->hdmarx->XferAbortCallback = NULL;
-    }
-  }
-
-  /* Disable the UART DMA Tx request if enabled */
-  if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT))
-  {
-    /* Disable DMA Tx at UART level */
-    ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT);
-
-    /* Abort the UART DMA Tx stream : use non blocking DMA Abort API (callback) */
-    if (huart->hdmatx != NULL)
-    {
-      /* UART Tx DMA Abort callback has already been initialised :
-         will lead to call HAL_UART_AbortCpltCallback() at end of DMA abort procedure */
-
-      /* Abort DMA TX */
-      if (HAL_DMA_Abort_IT(huart->hdmatx) != HAL_OK)
-      {
-        huart->hdmatx->XferAbortCallback = NULL;
-      }
-      else
-      {
-        AbortCplt = 0x00U;
-      }
-    }
-  }
-
-  /* Disable the UART DMA Rx request if enabled */
-  if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR))
-  {
-    ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);
-
-    /* Abort the UART DMA Rx stream : use non blocking DMA Abort API (callback) */
-    if (huart->hdmarx != NULL)
-    {
-      /* UART Rx DMA Abort callback has already been initialised :
-         will lead to call HAL_UART_AbortCpltCallback() at end of DMA abort procedure */
-
-      /* Abort DMA RX */
-      if (HAL_DMA_Abort_IT(huart->hdmarx) != HAL_OK)
-      {
-        huart->hdmarx->XferAbortCallback = NULL;
-        AbortCplt = 0x01U;
-      }
-      else
-      {
-        AbortCplt = 0x00U;
-      }
-    }
-  }
-
-  /* if no DMA abort complete callback execution is required => call user Abort Complete callback */
-  if (AbortCplt == 0x01U)
-  {
-    /* Reset Tx and Rx transfer counters */
-    huart->TxXferCount = 0x00U;
-    huart->RxXferCount = 0x00U;
-
-    /* Reset ErrorCode */
-    huart->ErrorCode = HAL_UART_ERROR_NONE;
-
-    /* Restore huart->gState and huart->RxState to Ready */
-    huart->gState  = HAL_UART_STATE_READY;
-    huart->RxState = HAL_UART_STATE_READY;
-    huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
-
-    /* As no DMA to be aborted, call directly user Abort complete callback */
-#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
-    /* Call registered Abort complete callback */
-    huart->AbortCpltCallback(huart);
-#else
-    /* Call legacy weak Abort complete callback */
-    HAL_UART_AbortCpltCallback(huart);
-#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
-  }
-
-  return HAL_OK;
-}
-
-/**
-  * @brief  Abort ongoing Transmit transfer (Interrupt mode).
-  * @param  huart UART handle.
-  * @note   This procedure could be used for aborting any ongoing Tx transfer started in Interrupt or DMA mode.
-  *         This procedure performs following operations :
-  *           - Disable UART Interrupts (Tx)
-  *           - Disable the DMA transfer in the peripheral register (if enabled)
-  *           - Abort DMA transfer by calling HAL_DMA_Abort_IT (in case of transfer in DMA mode)
-  *           - Set handle State to READY
-  *           - At abort completion, call user abort complete callback
-  * @note   This procedure is executed in Interrupt mode, meaning that abort procedure could be
-  *         considered as completed only when user abort complete callback is executed (not when exiting function).
-  * @retval HAL status
-  */
-HAL_StatusTypeDef HAL_UART_AbortTransmit_IT(UART_HandleTypeDef *huart)
-{
-  /* Disable TXEIE and TCIE interrupts */
-  ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_TXEIE | USART_CR1_TCIE));
-
-  /* Disable the UART DMA Tx request if enabled */
-  if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT))
-  {
-    ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT);
-
-    /* Abort the UART DMA Tx stream : use blocking DMA Abort API (no callback) */
-    if (huart->hdmatx != NULL)
-    {
-      /* Set the UART DMA Abort callback :
-         will lead to call HAL_UART_AbortCpltCallback() at end of DMA abort procedure */
-      huart->hdmatx->XferAbortCallback = UART_DMATxOnlyAbortCallback;
-
-      /* Abort DMA TX */
-      if (HAL_DMA_Abort_IT(huart->hdmatx) != HAL_OK)
-      {
-        /* Call Directly huart->hdmatx->XferAbortCallback function in case of error */
-        huart->hdmatx->XferAbortCallback(huart->hdmatx);
-      }
-    }
-    else
-    {
-      /* Reset Tx transfer counter */
-      huart->TxXferCount = 0x00U;
-
-      /* Restore huart->gState to Ready */
-      huart->gState = HAL_UART_STATE_READY;
-
-      /* As no DMA to be aborted, call directly user Abort complete callback */
-#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
-      /* Call registered Abort Transmit Complete Callback */
-      huart->AbortTransmitCpltCallback(huart);
-#else
-      /* Call legacy weak Abort Transmit Complete Callback */
-      HAL_UART_AbortTransmitCpltCallback(huart);
-#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
-    }
-  }
-  else
-  {
-    /* Reset Tx transfer counter */
-    huart->TxXferCount = 0x00U;
-
-    /* Restore huart->gState to Ready */
-    huart->gState = HAL_UART_STATE_READY;
-
-    /* As no DMA to be aborted, call directly user Abort complete callback */
-#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
-    /* Call registered Abort Transmit Complete Callback */
-    huart->AbortTransmitCpltCallback(huart);
-#else
-    /* Call legacy weak Abort Transmit Complete Callback */
-    HAL_UART_AbortTransmitCpltCallback(huart);
-#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
-  }
-
-  return HAL_OK;
-}
-
-/**
-  * @brief  Abort ongoing Receive transfer (Interrupt mode).
-  * @param  huart UART handle.
-  * @note   This procedure could be used for aborting any ongoing Rx transfer started in Interrupt or DMA mode.
-  *         This procedure performs following operations :
-  *           - Disable UART Interrupts (Rx)
-  *           - Disable the DMA transfer in the peripheral register (if enabled)
-  *           - Abort DMA transfer by calling HAL_DMA_Abort_IT (in case of transfer in DMA mode)
-  *           - Set handle State to READY
-  *           - At abort completion, call user abort complete callback
-  * @note   This procedure is executed in Interrupt mode, meaning that abort procedure could be
-  *         considered as completed only when user abort complete callback is executed (not when exiting function).
-  * @retval HAL status
-  */
-HAL_StatusTypeDef HAL_UART_AbortReceive_IT(UART_HandleTypeDef *huart)
-{
-  /* Disable RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */
-  ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE));
-  ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
-
-  /* If Reception till IDLE event was ongoing, disable IDLEIE interrupt */
-  if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
-  {
-    ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_IDLEIE));
-  }
-
-  /* Disable the UART DMA Rx request if enabled */
-  if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR))
-  {
-    ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);
-
-    /* Abort the UART DMA Rx stream : use blocking DMA Abort API (no callback) */
-    if (huart->hdmarx != NULL)
-    {
-      /* Set the UART DMA Abort callback :
-         will lead to call HAL_UART_AbortCpltCallback() at end of DMA abort procedure */
-      huart->hdmarx->XferAbortCallback = UART_DMARxOnlyAbortCallback;
-
-      /* Abort DMA RX */
-      if (HAL_DMA_Abort_IT(huart->hdmarx) != HAL_OK)
-      {
-        /* Call Directly huart->hdmarx->XferAbortCallback function in case of error */
-        huart->hdmarx->XferAbortCallback(huart->hdmarx);
-      }
-    }
-    else
-    {
-      /* Reset Rx transfer counter */
-      huart->RxXferCount = 0x00U;
-
-      /* Restore huart->RxState to Ready */
-      huart->RxState = HAL_UART_STATE_READY;
-      huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
-
-      /* As no DMA to be aborted, call directly user Abort complete callback */
-#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
-      /* Call registered Abort Receive Complete Callback */
-      huart->AbortReceiveCpltCallback(huart);
-#else
-      /* Call legacy weak Abort Receive Complete Callback */
-      HAL_UART_AbortReceiveCpltCallback(huart);
-#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
-    }
-  }
-  else
-  {
-    /* Reset Rx transfer counter */
-    huart->RxXferCount = 0x00U;
-
-    /* Restore huart->RxState to Ready */
-    huart->RxState = HAL_UART_STATE_READY;
-    huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
-
-    /* As no DMA to be aborted, call directly user Abort complete callback */
-#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
-    /* Call registered Abort Receive Complete Callback */
-    huart->AbortReceiveCpltCallback(huart);
-#else
-    /* Call legacy weak Abort Receive Complete Callback */
-    HAL_UART_AbortReceiveCpltCallback(huart);
-#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
-  }
-
-  return HAL_OK;
-}
-
-/**
-  * @brief  This function handles UART interrupt request.
-  * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
-  *                the configuration information for the specified UART module.
-  * @retval None
-  */
-void HAL_UART_IRQHandler(UART_HandleTypeDef *huart)
-{
-  uint32_t isrflags   = READ_REG(huart->Instance->SR);
-  uint32_t cr1its     = READ_REG(huart->Instance->CR1);
-  uint32_t cr3its     = READ_REG(huart->Instance->CR3);
-  uint32_t errorflags = 0x00U;
-  uint32_t dmarequest = 0x00U;
-
-  /* If no error occurs */
-  errorflags = (isrflags & (uint32_t)(USART_SR_PE | USART_SR_FE | USART_SR_ORE | USART_SR_NE));
-  if (errorflags == RESET)
-  {
-    /* UART in mode Receiver -------------------------------------------------*/
-    if (((isrflags & USART_SR_RXNE) != RESET) && ((cr1its & USART_CR1_RXNEIE) != RESET))
-    {
-      UART_Receive_IT(huart);
-      return;
-    }
-  }
-
-  /* If some errors occur */
-  if ((errorflags != RESET) && (((cr3its & USART_CR3_EIE) != RESET)
-                                || ((cr1its & (USART_CR1_RXNEIE | USART_CR1_PEIE)) != RESET)))
-  {
-    /* UART parity error interrupt occurred ----------------------------------*/
-    if (((isrflags & USART_SR_PE) != RESET) && ((cr1its & USART_CR1_PEIE) != RESET))
-    {
-      huart->ErrorCode |= HAL_UART_ERROR_PE;
-    }
-
-    /* UART noise error interrupt occurred -----------------------------------*/
-    if (((isrflags & USART_SR_NE) != RESET) && ((cr3its & USART_CR3_EIE) != RESET))
-    {
-      huart->ErrorCode |= HAL_UART_ERROR_NE;
-    }
-
-    /* UART frame error interrupt occurred -----------------------------------*/
-    if (((isrflags & USART_SR_FE) != RESET) && ((cr3its & USART_CR3_EIE) != RESET))
-    {
-      huart->ErrorCode |= HAL_UART_ERROR_FE;
-    }
-
-    /* UART Over-Run interrupt occurred --------------------------------------*/
-    if (((isrflags & USART_SR_ORE) != RESET) && (((cr1its & USART_CR1_RXNEIE) != RESET)
-                                                 || ((cr3its & USART_CR3_EIE) != RESET)))
-    {
-      huart->ErrorCode |= HAL_UART_ERROR_ORE;
-    }
-
-    /* Call UART Error Call back function if need be --------------------------*/
-    if (huart->ErrorCode != HAL_UART_ERROR_NONE)
-    {
-      /* UART in mode Receiver -----------------------------------------------*/
-      if (((isrflags & USART_SR_RXNE) != RESET) && ((cr1its & USART_CR1_RXNEIE) != RESET))
-      {
-        UART_Receive_IT(huart);
-      }
-
-      /* If Overrun error occurs, or if any error occurs in DMA mode reception,
-         consider error as blocking */
-      dmarequest = HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR);
-      if (((huart->ErrorCode & HAL_UART_ERROR_ORE) != RESET) || dmarequest)
-      {
-        /* Blocking error : transfer is aborted
-           Set the UART state ready to be able to start again the process,
-           Disable Rx Interrupts, and disable Rx DMA request, if ongoing */
-        UART_EndRxTransfer(huart);
-
-        /* Disable the UART DMA Rx request if enabled */
-        if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR))
-        {
-          ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);
-
-          /* Abort the UART DMA Rx stream */
-          if (huart->hdmarx != NULL)
-          {
-            /* Set the UART DMA Abort callback :
-               will lead to call HAL_UART_ErrorCallback() at end of DMA abort procedure */
-            huart->hdmarx->XferAbortCallback = UART_DMAAbortOnError;
-            if (HAL_DMA_Abort_IT(huart->hdmarx) != HAL_OK)
-            {
-              /* Call Directly XferAbortCallback function in case of error */
-              huart->hdmarx->XferAbortCallback(huart->hdmarx);
-            }
-          }
-          else
-          {
-            /* Call user error callback */
-#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
-            /*Call registered error callback*/
-            huart->ErrorCallback(huart);
-#else
-            /*Call legacy weak error callback*/
-            HAL_UART_ErrorCallback(huart);
-#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
-          }
-        }
-        else
-        {
-          /* Call user error callback */
-#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
-          /*Call registered error callback*/
-          huart->ErrorCallback(huart);
-#else
-          /*Call legacy weak error callback*/
-          HAL_UART_ErrorCallback(huart);
-#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
-        }
-      }
-      else
-      {
-        /* Non Blocking error : transfer could go on.
-           Error is notified to user through user error callback */
-#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
-        /*Call registered error callback*/
-        huart->ErrorCallback(huart);
-#else
-        /*Call legacy weak error callback*/
-        HAL_UART_ErrorCallback(huart);
-#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
-
-        huart->ErrorCode = HAL_UART_ERROR_NONE;
-      }
-    }
-    return;
-  } /* End if some error occurs */
-
-  /* Check current reception Mode :
-     If Reception till IDLE event has been selected : */
-  if ((huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
-      && ((isrflags & USART_SR_IDLE) != 0U)
-      && ((cr1its & USART_SR_IDLE) != 0U))
-  {
-    __HAL_UART_CLEAR_IDLEFLAG(huart);
-
-    /* Check if DMA mode is enabled in UART */
-    if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR))
-    {
-      /* DMA mode enabled */
-      /* Check received length : If all expected data are received, do nothing,
-         (DMA cplt callback will be called).
-         Otherwise, if at least one data has already been received, IDLE event is to be notified to user */
-      uint16_t nb_remaining_rx_data = (uint16_t) __HAL_DMA_GET_COUNTER(huart->hdmarx);
-      if ((nb_remaining_rx_data > 0U)
-          && (nb_remaining_rx_data < huart->RxXferSize))
-      {
-        /* Reception is not complete */
-        huart->RxXferCount = nb_remaining_rx_data;
-
-        /* In Normal mode, end DMA xfer and HAL UART Rx process*/
-        if (huart->hdmarx->Init.Mode != DMA_CIRCULAR)
-        {
-          /* Disable PE and ERR (Frame error, noise error, overrun error) interrupts */
-          ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_PEIE);
-          ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
-
-          /* Disable the DMA transfer for the receiver request by resetting the DMAR bit
-             in the UART CR3 register */
-          ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);
-
-          /* At end of Rx process, restore huart->RxState to Ready */
-          huart->RxState = HAL_UART_STATE_READY;
-          huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
-
-          ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_IDLEIE);
-
-          /* Last bytes received, so no need as the abort is immediate */
-          (void)HAL_DMA_Abort(huart->hdmarx);
-        }
-#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
-        /*Call registered Rx Event callback*/
-        huart->RxEventCallback(huart, (huart->RxXferSize - huart->RxXferCount));
-#else
-        /*Call legacy weak Rx Event callback*/
-        HAL_UARTEx_RxEventCallback(huart, (huart->RxXferSize - huart->RxXferCount));
-#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
-      }
-      return;
-    }
-    else
-    {
-      /* DMA mode not enabled */
-      /* Check received length : If all expected data are received, do nothing.
-         Otherwise, if at least one data has already been received, IDLE event is to be notified to user */
-      uint16_t nb_rx_data = huart->RxXferSize - huart->RxXferCount;
-      if ((huart->RxXferCount > 0U)
-          && (nb_rx_data > 0U))
-      {
-        /* Disable the UART Parity Error Interrupt and RXNE interrupts */
-        ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE));
-
-        /* Disable the UART Error Interrupt: (Frame error, noise error, overrun error) */
-        ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
-
-        /* Rx process is completed, restore huart->RxState to Ready */
-        huart->RxState = HAL_UART_STATE_READY;
-        huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
-
-        ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_IDLEIE);
-#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
-        /*Call registered Rx complete callback*/
-        huart->RxEventCallback(huart, nb_rx_data);
-#else
-        /*Call legacy weak Rx Event callback*/
-        HAL_UARTEx_RxEventCallback(huart, nb_rx_data);
-#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
-      }
-      return;
-    }
-  }
-
-  /* UART in mode Transmitter ------------------------------------------------*/
-  if (((isrflags & USART_SR_TXE) != RESET) && ((cr1its & USART_CR1_TXEIE) != RESET))
-  {
-    UART_Transmit_IT(huart);
-    return;
-  }
-
-  /* UART in mode Transmitter end --------------------------------------------*/
-  if (((isrflags & USART_SR_TC) != RESET) && ((cr1its & USART_CR1_TCIE) != RESET))
-  {
-    UART_EndTransmit_IT(huart);
-    return;
-  }
-}
-
-/**
-  * @brief  Tx Transfer completed callbacks.
-  * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
-  *                the configuration information for the specified UART module.
-  * @retval None
-  */
-__weak void HAL_UART_TxCpltCallback(UART_HandleTypeDef *huart)
-{
-  /* Prevent unused argument(s) compilation warning */
-  UNUSED(huart);
-  /* NOTE: This function should not be modified, when the callback is needed,
-           the HAL_UART_TxCpltCallback could be implemented in the user file
-   */
-}
-
-/**
-  * @brief  Tx Half Transfer completed callbacks.
-  * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
-  *                the configuration information for the specified UART module.
-  * @retval None
-  */
-__weak void HAL_UART_TxHalfCpltCallback(UART_HandleTypeDef *huart)
-{
-  /* Prevent unused argument(s) compilation warning */
-  UNUSED(huart);
-  /* NOTE: This function should not be modified, when the callback is needed,
-           the HAL_UART_TxHalfCpltCallback could be implemented in the user file
-   */
-}
-
-/**
-  * @brief  Rx Transfer completed callbacks.
-  * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
-  *                the configuration information for the specified UART module.
-  * @retval None
-  */
-__weak void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart)
-{
-  /* Prevent unused argument(s) compilation warning */
-  UNUSED(huart);
-  /* NOTE: This function should not be modified, when the callback is needed,
-           the HAL_UART_RxCpltCallback could be implemented in the user file
-   */
-}
-
-/**
-  * @brief  Rx Half Transfer completed callbacks.
-  * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
-  *                the configuration information for the specified UART module.
-  * @retval None
-  */
-__weak void HAL_UART_RxHalfCpltCallback(UART_HandleTypeDef *huart)
-{
-  /* Prevent unused argument(s) compilation warning */
-  UNUSED(huart);
-  /* NOTE: This function should not be modified, when the callback is needed,
-           the HAL_UART_RxHalfCpltCallback could be implemented in the user file
-   */
-}
-
-/**
-  * @brief  UART error callbacks.
-  * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
-  *                the configuration information for the specified UART module.
-  * @retval None
-  */
-__weak void HAL_UART_ErrorCallback(UART_HandleTypeDef *huart)
-{
-  /* Prevent unused argument(s) compilation warning */
-  UNUSED(huart);
-  /* NOTE: This function should not be modified, when the callback is needed,
-           the HAL_UART_ErrorCallback could be implemented in the user file
-   */
-}
-
-/**
-  * @brief  UART Abort Complete callback.
-  * @param  huart UART handle.
-  * @retval None
-  */
-__weak void HAL_UART_AbortCpltCallback(UART_HandleTypeDef *huart)
-{
-  /* Prevent unused argument(s) compilation warning */
-  UNUSED(huart);
-
-  /* NOTE : This function should not be modified, when the callback is needed,
-            the HAL_UART_AbortCpltCallback can be implemented in the user file.
-   */
-}
-
-/**
-  * @brief  UART Abort Complete callback.
-  * @param  huart UART handle.
-  * @retval None
-  */
-__weak void HAL_UART_AbortTransmitCpltCallback(UART_HandleTypeDef *huart)
-{
-  /* Prevent unused argument(s) compilation warning */
-  UNUSED(huart);
-
-  /* NOTE : This function should not be modified, when the callback is needed,
-            the HAL_UART_AbortTransmitCpltCallback can be implemented in the user file.
-   */
-}
-
-/**
-  * @brief  UART Abort Receive Complete callback.
-  * @param  huart UART handle.
-  * @retval None
-  */
-__weak void HAL_UART_AbortReceiveCpltCallback(UART_HandleTypeDef *huart)
-{
-  /* Prevent unused argument(s) compilation warning */
-  UNUSED(huart);
-
-  /* NOTE : This function should not be modified, when the callback is needed,
-            the HAL_UART_AbortReceiveCpltCallback can be implemented in the user file.
-   */
-}
-
-/**
-  * @brief  Reception Event Callback (Rx event notification called after use of advanced reception service).
-  * @param  huart UART handle
-  * @param  Size  Number of data available in application reception buffer (indicates a position in
-  *               reception buffer until which, data are available)
-  * @retval None
-  */
-__weak void HAL_UARTEx_RxEventCallback(UART_HandleTypeDef *huart, uint16_t Size)
-{
-  /* Prevent unused argument(s) compilation warning */
-  UNUSED(huart);
-  UNUSED(Size);
-
-  /* NOTE : This function should not be modified, when the callback is needed,
-            the HAL_UARTEx_RxEventCallback can be implemented in the user file.
-   */
-}
-
-/**
-  * @}
-  */
-
-/** @defgroup UART_Exported_Functions_Group3 Peripheral Control functions
-  *  @brief   UART control functions
-  *
-@verbatim
-  ==============================================================================
-                      ##### Peripheral Control functions #####
-  ==============================================================================
-  [..]
-    This subsection provides a set of functions allowing to control the UART:
-    (+) HAL_LIN_SendBreak() API can be helpful to transmit the break character.
-    (+) HAL_MultiProcessor_EnterMuteMode() API can be helpful to enter the UART in mute mode.
-    (+) HAL_MultiProcessor_ExitMuteMode() API can be helpful to exit the UART mute mode by software.
-    (+) HAL_HalfDuplex_EnableTransmitter() API to enable the UART transmitter and disables the UART receiver in Half Duplex mode
-    (+) HAL_HalfDuplex_EnableReceiver() API to enable the UART receiver and disables the UART transmitter in Half Duplex mode
-
-@endverbatim
-  * @{
-  */
-
-/**
-  * @brief  Transmits break characters.
-  * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
-  *                the configuration information for the specified UART module.
-  * @retval HAL status
-  */
-HAL_StatusTypeDef HAL_LIN_SendBreak(UART_HandleTypeDef *huart)
-{
-  /* Check the parameters */
-  assert_param(IS_UART_INSTANCE(huart->Instance));
-
-  /* Process Locked */
-  __HAL_LOCK(huart);
-
-  huart->gState = HAL_UART_STATE_BUSY;
-
-  /* Send break characters */
-  ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_SBK);
-
-  huart->gState = HAL_UART_STATE_READY;
-
-  /* Process Unlocked */
-  __HAL_UNLOCK(huart);
-
-  return HAL_OK;
-}
-
-/**
-  * @brief  Enters the UART in mute mode.
-  * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
-  *                the configuration information for the specified UART module.
-  * @retval HAL status
-  */
-HAL_StatusTypeDef HAL_MultiProcessor_EnterMuteMode(UART_HandleTypeDef *huart)
-{
-  /* Check the parameters */
-  assert_param(IS_UART_INSTANCE(huart->Instance));
-
-  /* Process Locked */
-  __HAL_LOCK(huart);
-
-  huart->gState = HAL_UART_STATE_BUSY;
-
-  /* Enable the USART mute mode  by setting the RWU bit in the CR1 register */
-  ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_RWU);
-
-  huart->gState = HAL_UART_STATE_READY;
-
-  /* Process Unlocked */
-  __HAL_UNLOCK(huart);
-
-  return HAL_OK;
-}
-
-/**
-  * @brief  Exits the UART mute mode: wake up software.
-  * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
-  *                the configuration information for the specified UART module.
-  * @retval HAL status
-  */
-HAL_StatusTypeDef HAL_MultiProcessor_ExitMuteMode(UART_HandleTypeDef *huart)
-{
-  /* Check the parameters */
-  assert_param(IS_UART_INSTANCE(huart->Instance));
-
-  /* Process Locked */
-  __HAL_LOCK(huart);
-
-  huart->gState = HAL_UART_STATE_BUSY;
-
-  /* Disable the USART mute mode by clearing the RWU bit in the CR1 register */
-  ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_RWU);
-
-  huart->gState = HAL_UART_STATE_READY;
-
-  /* Process Unlocked */
-  __HAL_UNLOCK(huart);
-
-  return HAL_OK;
-}
-
-/**
-  * @brief  Enables the UART transmitter and disables the UART receiver.
-  * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
-  *                the configuration information for the specified UART module.
-  * @retval HAL status
-  */
-HAL_StatusTypeDef HAL_HalfDuplex_EnableTransmitter(UART_HandleTypeDef *huart)
-{
-  uint32_t tmpreg = 0x00U;
-
-  /* Process Locked */
-  __HAL_LOCK(huart);
-
-  huart->gState = HAL_UART_STATE_BUSY;
-
-  /*-------------------------- USART CR1 Configuration -----------------------*/
-  tmpreg = huart->Instance->CR1;
-
-  /* Clear TE and RE bits */
-  tmpreg &= (uint32_t)~((uint32_t)(USART_CR1_TE | USART_CR1_RE));
-
-  /* Enable the USART's transmit interface by setting the TE bit in the USART CR1 register */
-  tmpreg |= (uint32_t)USART_CR1_TE;
-
-  /* Write to USART CR1 */
-  WRITE_REG(huart->Instance->CR1, (uint32_t)tmpreg);
-
-  huart->gState = HAL_UART_STATE_READY;
-
-  /* Process Unlocked */
-  __HAL_UNLOCK(huart);
-
-  return HAL_OK;
-}
-
-/**
-  * @brief  Enables the UART receiver and disables the UART transmitter.
-  * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
-  *                the configuration information for the specified UART module.
-  * @retval HAL status
-  */
-HAL_StatusTypeDef HAL_HalfDuplex_EnableReceiver(UART_HandleTypeDef *huart)
-{
-  uint32_t tmpreg = 0x00U;
-
-  /* Process Locked */
-  __HAL_LOCK(huart);
-
-  huart->gState = HAL_UART_STATE_BUSY;
-
-  /*-------------------------- USART CR1 Configuration -----------------------*/
-  tmpreg = huart->Instance->CR1;
-
-  /* Clear TE and RE bits */
-  tmpreg &= (uint32_t)~((uint32_t)(USART_CR1_TE | USART_CR1_RE));
-
-  /* Enable the USART's receive interface by setting the RE bit in the USART CR1 register */
-  tmpreg |= (uint32_t)USART_CR1_RE;
-
-  /* Write to USART CR1 */
-  WRITE_REG(huart->Instance->CR1, (uint32_t)tmpreg);
-
-  huart->gState = HAL_UART_STATE_READY;
-
-  /* Process Unlocked */
-  __HAL_UNLOCK(huart);
-
-  return HAL_OK;
-}
-
-/**
-  * @}
-  */
-
-/** @defgroup UART_Exported_Functions_Group4 Peripheral State and Errors functions
-  *  @brief   UART State and Errors functions
-  *
-@verbatim
-  ==============================================================================
-                 ##### Peripheral State and Errors functions #####
-  ==============================================================================
- [..]
-   This subsection provides a set of functions allowing to return the State of
-   UART communication process, return Peripheral Errors occurred during communication
-   process
-   (+) HAL_UART_GetState() API can be helpful to check in run-time the state of the UART peripheral.
-   (+) HAL_UART_GetError() check in run-time errors that could be occurred during communication.
-
-@endverbatim
-  * @{
-  */
-
-/**
-  * @brief  Returns the UART state.
-  * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
-  *                the configuration information for the specified UART module.
-  * @retval HAL state
-  */
-HAL_UART_StateTypeDef HAL_UART_GetState(UART_HandleTypeDef *huart)
-{
-  uint32_t temp1 = 0x00U, temp2 = 0x00U;
-  temp1 = huart->gState;
-  temp2 = huart->RxState;
-
-  return (HAL_UART_StateTypeDef)(temp1 | temp2);
-}
-
-/**
-  * @brief  Return the UART error code
-  * @param  huart Pointer to a UART_HandleTypeDef structure that contains
-  *               the configuration information for the specified UART.
-  * @retval UART Error Code
-  */
-uint32_t HAL_UART_GetError(UART_HandleTypeDef *huart)
-{
-  return huart->ErrorCode;
-}
-
-/**
-  * @}
-  */
-
-/**
-  * @}
-  */
-
-/** @defgroup UART_Private_Functions UART Private Functions
-  * @{
-  */
-
-/**
-  * @brief  Initialize the callbacks to their default values.
-  * @param  huart UART handle.
-  * @retval none
-  */
-#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
-void UART_InitCallbacksToDefault(UART_HandleTypeDef *huart)
-{
-  /* Init the UART Callback settings */
-  huart->TxHalfCpltCallback        = HAL_UART_TxHalfCpltCallback;        /* Legacy weak TxHalfCpltCallback        */
-  huart->TxCpltCallback            = HAL_UART_TxCpltCallback;            /* Legacy weak TxCpltCallback            */
-  huart->RxHalfCpltCallback        = HAL_UART_RxHalfCpltCallback;        /* Legacy weak RxHalfCpltCallback        */
-  huart->RxCpltCallback            = HAL_UART_RxCpltCallback;            /* Legacy weak RxCpltCallback            */
-  huart->ErrorCallback             = HAL_UART_ErrorCallback;             /* Legacy weak ErrorCallback             */
-  huart->AbortCpltCallback         = HAL_UART_AbortCpltCallback;         /* Legacy weak AbortCpltCallback         */
-  huart->AbortTransmitCpltCallback = HAL_UART_AbortTransmitCpltCallback; /* Legacy weak AbortTransmitCpltCallback */
-  huart->AbortReceiveCpltCallback  = HAL_UART_AbortReceiveCpltCallback;  /* Legacy weak AbortReceiveCpltCallback  */
-  huart->RxEventCallback           = HAL_UARTEx_RxEventCallback;         /* Legacy weak RxEventCallback           */
-
-}
-#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
-
-/**
-  * @brief  DMA UART transmit process complete callback.
-  * @param  hdma  Pointer to a DMA_HandleTypeDef structure that contains
-  *               the configuration information for the specified DMA module.
-  * @retval None
-  */
-static void UART_DMATransmitCplt(DMA_HandleTypeDef *hdma)
-{
-  UART_HandleTypeDef *huart = (UART_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
-  /* DMA Normal mode*/
-  if ((hdma->Instance->CR & DMA_SxCR_CIRC) == 0U)
-  {
-    huart->TxXferCount = 0x00U;
-
-    /* Disable the DMA transfer for transmit request by setting the DMAT bit
-       in the UART CR3 register */
-    ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT);
-
-    /* Enable the UART Transmit Complete Interrupt */
-    ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_TCIE);
-
-  }
-  /* DMA Circular mode */
-  else
-  {
-#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
-    /*Call registered Tx complete callback*/
-    huart->TxCpltCallback(huart);
-#else
-    /*Call legacy weak Tx complete callback*/
-    HAL_UART_TxCpltCallback(huart);
-#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
-  }
-}
-
-/**
-  * @brief DMA UART transmit process half complete callback
-  * @param  hdma  Pointer to a DMA_HandleTypeDef structure that contains
-  *               the configuration information for the specified DMA module.
-  * @retval None
-  */
-static void UART_DMATxHalfCplt(DMA_HandleTypeDef *hdma)
-{
-  UART_HandleTypeDef *huart = (UART_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
-
-#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
-  /*Call registered Tx complete callback*/
-  huart->TxHalfCpltCallback(huart);
-#else
-  /*Call legacy weak Tx complete callback*/
-  HAL_UART_TxHalfCpltCallback(huart);
-#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
-}
-
-/**
-  * @brief  DMA UART receive process complete callback.
-  * @param  hdma  Pointer to a DMA_HandleTypeDef structure that contains
-  *               the configuration information for the specified DMA module.
-  * @retval None
-  */
-static void UART_DMAReceiveCplt(DMA_HandleTypeDef *hdma)
-{
-  UART_HandleTypeDef *huart = (UART_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
-  /* DMA Normal mode*/
-  if ((hdma->Instance->CR & DMA_SxCR_CIRC) == 0U)
-  {
-    huart->RxXferCount = 0U;
-
-    /* Disable RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */
-    ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_PEIE);
-    ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
-
-    /* Disable the DMA transfer for the receiver request by setting the DMAR bit
-       in the UART CR3 register */
-    ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);
-
-    /* At end of Rx process, restore huart->RxState to Ready */
-    huart->RxState = HAL_UART_STATE_READY;
-
-    /* If Reception till IDLE event has been selected, Disable IDLE Interrupt */
-    if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
-    {
-      ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_IDLEIE);
-    }
-  }
-
-  /* Check current reception Mode :
-     If Reception till IDLE event has been selected : use Rx Event callback */
-  if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
-  {
-#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
-    /*Call registered Rx Event callback*/
-    huart->RxEventCallback(huart, huart->RxXferSize);
-#else
-    /*Call legacy weak Rx Event callback*/
-    HAL_UARTEx_RxEventCallback(huart, huart->RxXferSize);
-#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
-  }
-  else
-  {
-    /* In other cases : use Rx Complete callback */
-#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
-    /*Call registered Rx complete callback*/
-    huart->RxCpltCallback(huart);
-#else
-    /*Call legacy weak Rx complete callback*/
-    HAL_UART_RxCpltCallback(huart);
-#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
-  }
-}
-
-/**
-  * @brief DMA UART receive process half complete callback
-  * @param  hdma  Pointer to a DMA_HandleTypeDef structure that contains
-  *               the configuration information for the specified DMA module.
-  * @retval None
-  */
-static void UART_DMARxHalfCplt(DMA_HandleTypeDef *hdma)
-{
-  UART_HandleTypeDef *huart = (UART_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
-
-  /* Check current reception Mode :
-     If Reception till IDLE event has been selected : use Rx Event callback */
-  if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
-  {
-#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
-    /*Call registered Rx Event callback*/
-    huart->RxEventCallback(huart, huart->RxXferSize / 2U);
-#else
-    /*Call legacy weak Rx Event callback*/
-    HAL_UARTEx_RxEventCallback(huart, huart->RxXferSize / 2U);
-#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
-  }
-  else
-  {
-    /* In other cases : use Rx Half Complete callback */
-#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
-    /*Call registered Rx Half complete callback*/
-    huart->RxHalfCpltCallback(huart);
-#else
-    /*Call legacy weak Rx Half complete callback*/
-    HAL_UART_RxHalfCpltCallback(huart);
-#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
-  }
-}
-
-/**
-  * @brief  DMA UART communication error callback.
-  * @param  hdma  Pointer to a DMA_HandleTypeDef structure that contains
-  *               the configuration information for the specified DMA module.
-  * @retval None
-  */
-static void UART_DMAError(DMA_HandleTypeDef *hdma)
-{
-  uint32_t dmarequest = 0x00U;
-  UART_HandleTypeDef *huart = (UART_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
-
-  /* Stop UART DMA Tx request if ongoing */
-  dmarequest = HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT);
-  if ((huart->gState == HAL_UART_STATE_BUSY_TX) && dmarequest)
-  {
-    huart->TxXferCount = 0x00U;
-    UART_EndTxTransfer(huart);
-  }
-
-  /* Stop UART DMA Rx request if ongoing */
-  dmarequest = HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR);
-  if ((huart->RxState == HAL_UART_STATE_BUSY_RX) && dmarequest)
-  {
-    huart->RxXferCount = 0x00U;
-    UART_EndRxTransfer(huart);
-  }
-
-  huart->ErrorCode |= HAL_UART_ERROR_DMA;
-#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
-  /*Call registered error callback*/
-  huart->ErrorCallback(huart);
-#else
-  /*Call legacy weak error callback*/
-  HAL_UART_ErrorCallback(huart);
-#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
-}
-
-/**
-  * @brief  This function handles UART Communication Timeout.
-  * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
-  *                the configuration information for the specified UART module.
-  * @param  Flag specifies the UART flag to check.
-  * @param  Status The new Flag status (SET or RESET).
-  * @param  Tickstart Tick start value
-  * @param  Timeout Timeout duration
-  * @retval HAL status
-  */
-static HAL_StatusTypeDef UART_WaitOnFlagUntilTimeout(UART_HandleTypeDef *huart, uint32_t Flag, FlagStatus Status,
-                                                     uint32_t Tickstart, uint32_t Timeout)
-{
-  /* Wait until flag is set */
-  while ((__HAL_UART_GET_FLAG(huart, Flag) ? SET : RESET) == Status)
-  {
-    /* Check for the Timeout */
-    if (Timeout != HAL_MAX_DELAY)
-    {
-      if ((Timeout == 0U) || ((HAL_GetTick() - Tickstart) > Timeout))
-      {
-        /* Disable TXE, RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts for the interrupt process */
-        ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE | USART_CR1_TXEIE));
-        ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
-
-        huart->gState  = HAL_UART_STATE_READY;
-        huart->RxState = HAL_UART_STATE_READY;
-
-        /* Process Unlocked */
-        __HAL_UNLOCK(huart);
-
-        return HAL_TIMEOUT;
-      }
-    }
-  }
-  return HAL_OK;
-}
-
-/**
-  * @brief  Start Receive operation in interrupt mode.
-  * @note   This function could be called by all HAL UART API providing reception in Interrupt mode.
-  * @note   When calling this function, parameters validity is considered as already checked,
-  *         i.e. Rx State, buffer address, ...
-  *         UART Handle is assumed as Locked.
-  * @param  huart UART handle.
-  * @param  pData Pointer to data buffer (u8 or u16 data elements).
-  * @param  Size  Amount of data elements (u8 or u16) to be received.
-  * @retval HAL status
-  */
-HAL_StatusTypeDef UART_Start_Receive_IT(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)
-{
-  huart->pRxBuffPtr = pData;
-  huart->RxXferSize = Size;
-  huart->RxXferCount = Size;
-
-  huart->ErrorCode = HAL_UART_ERROR_NONE;
-  huart->RxState = HAL_UART_STATE_BUSY_RX;
-
-  /* Process Unlocked */
-  __HAL_UNLOCK(huart);
-
-  /* Enable the UART Parity Error Interrupt */
-  __HAL_UART_ENABLE_IT(huart, UART_IT_PE);
-
-  /* Enable the UART Error Interrupt: (Frame error, noise error, overrun error) */
-  __HAL_UART_ENABLE_IT(huart, UART_IT_ERR);
-
-  /* Enable the UART Data Register not empty Interrupt */
-  __HAL_UART_ENABLE_IT(huart, UART_IT_RXNE);
-
-  return HAL_OK;
-}
-
-/**
-  * @brief  Start Receive operation in DMA mode.
-  * @note   This function could be called by all HAL UART API providing reception in DMA mode.
-  * @note   When calling this function, parameters validity is considered as already checked,
-  *         i.e. Rx State, buffer address, ...
-  *         UART Handle is assumed as Locked.
-  * @param  huart UART handle.
-  * @param  pData Pointer to data buffer (u8 or u16 data elements).
-  * @param  Size  Amount of data elements (u8 or u16) to be received.
-  * @retval HAL status
-  */
-HAL_StatusTypeDef UART_Start_Receive_DMA(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)
-{
-  uint32_t *tmp;
-
-  huart->pRxBuffPtr = pData;
-  huart->RxXferSize = Size;
-
-  huart->ErrorCode = HAL_UART_ERROR_NONE;
-  huart->RxState = HAL_UART_STATE_BUSY_RX;
-
-  /* Set the UART DMA transfer complete callback */
-  huart->hdmarx->XferCpltCallback = UART_DMAReceiveCplt;
-
-  /* Set the UART DMA Half transfer complete callback */
-  huart->hdmarx->XferHalfCpltCallback = UART_DMARxHalfCplt;
-
-  /* Set the DMA error callback */
-  huart->hdmarx->XferErrorCallback = UART_DMAError;
-
-  /* Set the DMA abort callback */
-  huart->hdmarx->XferAbortCallback = NULL;
-
-  /* Enable the DMA stream */
-  tmp = (uint32_t *)&pData;
-  HAL_DMA_Start_IT(huart->hdmarx, (uint32_t)&huart->Instance->DR, *(uint32_t *)tmp, Size);
-
-  /* Clear the Overrun flag just before enabling the DMA Rx request: can be mandatory for the second transfer */
-  __HAL_UART_CLEAR_OREFLAG(huart);
-
-  /* Process Unlocked */
-  __HAL_UNLOCK(huart);
-
-  /* Enable the UART Parity Error Interrupt */
-  ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_PEIE);
-
-  /* Enable the UART Error Interrupt: (Frame error, noise error, overrun error) */
-  ATOMIC_SET_BIT(huart->Instance->CR3, USART_CR3_EIE);
-
-  /* Enable the DMA transfer for the receiver request by setting the DMAR bit
-  in the UART CR3 register */
-  ATOMIC_SET_BIT(huart->Instance->CR3, USART_CR3_DMAR);
-
-  return HAL_OK;
-}
-
-/**
-  * @brief  End ongoing Tx transfer on UART peripheral (following error detection or Transmit completion).
-  * @param  huart UART handle.
-  * @retval None
-  */
-static void UART_EndTxTransfer(UART_HandleTypeDef *huart)
-{
-  /* Disable TXEIE and TCIE interrupts */
-  ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_TXEIE | USART_CR1_TCIE));
-
-  /* At end of Tx process, restore huart->gState to Ready */
-  huart->gState = HAL_UART_STATE_READY;
-}
-
-/**
-  * @brief  End ongoing Rx transfer on UART peripheral (following error detection or Reception completion).
-  * @param  huart UART handle.
-  * @retval None
-  */
-static void UART_EndRxTransfer(UART_HandleTypeDef *huart)
-{
-  /* Disable RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */
-  ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE));
-  ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
-
-  /* In case of reception waiting for IDLE event, disable also the IDLE IE interrupt source */
-  if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
-  {
-    ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_IDLEIE);
-  }
-
-  /* At end of Rx process, restore huart->RxState to Ready */
-  huart->RxState = HAL_UART_STATE_READY;
-  huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
-}
-
-/**
-  * @brief  DMA UART communication abort callback, when initiated by HAL services on Error
-  *         (To be called at end of DMA Abort procedure following error occurrence).
-  * @param  hdma  Pointer to a DMA_HandleTypeDef structure that contains
-  *               the configuration information for the specified DMA module.
-  * @retval None
-  */
-static void UART_DMAAbortOnError(DMA_HandleTypeDef *hdma)
-{
-  UART_HandleTypeDef *huart = (UART_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
-  huart->RxXferCount = 0x00U;
-  huart->TxXferCount = 0x00U;
-
-#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
-  /*Call registered error callback*/
-  huart->ErrorCallback(huart);
-#else
-  /*Call legacy weak error callback*/
-  HAL_UART_ErrorCallback(huart);
-#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
-}
-
-/**
-  * @brief  DMA UART Tx communication abort callback, when initiated by user
-  *         (To be called at end of DMA Tx Abort procedure following user abort request).
-  * @note   When this callback is executed, User Abort complete call back is called only if no
-  *         Abort still ongoing for Rx DMA Handle.
-  * @param  hdma  Pointer to a DMA_HandleTypeDef structure that contains
-  *               the configuration information for the specified DMA module.
-  * @retval None
-  */
-static void UART_DMATxAbortCallback(DMA_HandleTypeDef *hdma)
-{
-  UART_HandleTypeDef *huart = (UART_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
-
-  huart->hdmatx->XferAbortCallback = NULL;
-
-  /* Check if an Abort process is still ongoing */
-  if (huart->hdmarx != NULL)
-  {
-    if (huart->hdmarx->XferAbortCallback != NULL)
-    {
-      return;
-    }
-  }
-
-  /* No Abort process still ongoing : All DMA channels are aborted, call user Abort Complete callback */
-  huart->TxXferCount = 0x00U;
-  huart->RxXferCount = 0x00U;
-
-  /* Reset ErrorCode */
-  huart->ErrorCode = HAL_UART_ERROR_NONE;
-
-  /* Restore huart->gState and huart->RxState to Ready */
-  huart->gState  = HAL_UART_STATE_READY;
-  huart->RxState = HAL_UART_STATE_READY;
-  huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
-
-  /* Call user Abort complete callback */
-#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
-  /* Call registered Abort complete callback */
-  huart->AbortCpltCallback(huart);
-#else
-  /* Call legacy weak Abort complete callback */
-  HAL_UART_AbortCpltCallback(huart);
-#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
-}
-
-/**
-  * @brief  DMA UART Rx communication abort callback, when initiated by user
-  *         (To be called at end of DMA Rx Abort procedure following user abort request).
-  * @note   When this callback is executed, User Abort complete call back is called only if no
-  *         Abort still ongoing for Tx DMA Handle.
-  * @param  hdma  Pointer to a DMA_HandleTypeDef structure that contains
-  *               the configuration information for the specified DMA module.
-  * @retval None
-  */
-static void UART_DMARxAbortCallback(DMA_HandleTypeDef *hdma)
-{
-  UART_HandleTypeDef *huart = (UART_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
-
-  huart->hdmarx->XferAbortCallback = NULL;
-
-  /* Check if an Abort process is still ongoing */
-  if (huart->hdmatx != NULL)
-  {
-    if (huart->hdmatx->XferAbortCallback != NULL)
-    {
-      return;
-    }
-  }
-
-  /* No Abort process still ongoing : All DMA channels are aborted, call user Abort Complete callback */
-  huart->TxXferCount = 0x00U;
-  huart->RxXferCount = 0x00U;
-
-  /* Reset ErrorCode */
-  huart->ErrorCode = HAL_UART_ERROR_NONE;
-
-  /* Restore huart->gState and huart->RxState to Ready */
-  huart->gState  = HAL_UART_STATE_READY;
-  huart->RxState = HAL_UART_STATE_READY;
-  huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
-
-  /* Call user Abort complete callback */
-#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
-  /* Call registered Abort complete callback */
-  huart->AbortCpltCallback(huart);
-#else
-  /* Call legacy weak Abort complete callback */
-  HAL_UART_AbortCpltCallback(huart);
-#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
-}
-
-/**
-  * @brief  DMA UART Tx communication abort callback, when initiated by user by a call to
-  *         HAL_UART_AbortTransmit_IT API (Abort only Tx transfer)
-  *         (This callback is executed at end of DMA Tx Abort procedure following user abort request,
-  *         and leads to user Tx Abort Complete callback execution).
-  * @param  hdma  Pointer to a DMA_HandleTypeDef structure that contains
-  *               the configuration information for the specified DMA module.
-  * @retval None
-  */
-static void UART_DMATxOnlyAbortCallback(DMA_HandleTypeDef *hdma)
-{
-  UART_HandleTypeDef *huart = (UART_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
-
-  huart->TxXferCount = 0x00U;
-
-  /* Restore huart->gState to Ready */
-  huart->gState = HAL_UART_STATE_READY;
-
-  /* Call user Abort complete callback */
-#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
-  /* Call registered Abort Transmit Complete Callback */
-  huart->AbortTransmitCpltCallback(huart);
-#else
-  /* Call legacy weak Abort Transmit Complete Callback */
-  HAL_UART_AbortTransmitCpltCallback(huart);
-#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
-}
-
-/**
-  * @brief  DMA UART Rx communication abort callback, when initiated by user by a call to
-  *         HAL_UART_AbortReceive_IT API (Abort only Rx transfer)
-  *         (This callback is executed at end of DMA Rx Abort procedure following user abort request,
-  *         and leads to user Rx Abort Complete callback execution).
-  * @param  hdma  Pointer to a DMA_HandleTypeDef structure that contains
-  *               the configuration information for the specified DMA module.
-  * @retval None
-  */
-static void UART_DMARxOnlyAbortCallback(DMA_HandleTypeDef *hdma)
-{
-  UART_HandleTypeDef *huart = (UART_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
-
-  huart->RxXferCount = 0x00U;
-
-  /* Restore huart->RxState to Ready */
-  huart->RxState = HAL_UART_STATE_READY;
-  huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
-
-  /* Call user Abort complete callback */
-#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
-  /* Call registered Abort Receive Complete Callback */
-  huart->AbortReceiveCpltCallback(huart);
-#else
-  /* Call legacy weak Abort Receive Complete Callback */
-  HAL_UART_AbortReceiveCpltCallback(huart);
-#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
-}
-
-/**
-  * @brief  Sends an amount of data in non blocking mode.
-  * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
-  *                the configuration information for the specified UART module.
-  * @retval HAL status
-  */
-static HAL_StatusTypeDef UART_Transmit_IT(UART_HandleTypeDef *huart)
-{
-  uint16_t *tmp;
-
-  /* Check that a Tx process is ongoing */
-  if (huart->gState == HAL_UART_STATE_BUSY_TX)
-  {
-    if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE))
-    {
-      tmp = (uint16_t *) huart->pTxBuffPtr;
-      huart->Instance->DR = (uint16_t)(*tmp & (uint16_t)0x01FF);
-      huart->pTxBuffPtr += 2U;
-    }
-    else
-    {
-      huart->Instance->DR = (uint8_t)(*huart->pTxBuffPtr++ & (uint8_t)0x00FF);
-    }
-
-    if (--huart->TxXferCount == 0U)
-    {
-      /* Disable the UART Transmit Complete Interrupt */
-      __HAL_UART_DISABLE_IT(huart, UART_IT_TXE);
-
-      /* Enable the UART Transmit Complete Interrupt */
-      __HAL_UART_ENABLE_IT(huart, UART_IT_TC);
-    }
-    return HAL_OK;
-  }
-  else
-  {
-    return HAL_BUSY;
-  }
-}
-
-/**
-  * @brief  Wraps up transmission in non blocking mode.
-  * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
-  *                the configuration information for the specified UART module.
-  * @retval HAL status
-  */
-static HAL_StatusTypeDef UART_EndTransmit_IT(UART_HandleTypeDef *huart)
-{
-  /* Disable the UART Transmit Complete Interrupt */
-  __HAL_UART_DISABLE_IT(huart, UART_IT_TC);
-
-  /* Tx process is ended, restore huart->gState to Ready */
-  huart->gState = HAL_UART_STATE_READY;
-
-#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
-  /*Call registered Tx complete callback*/
-  huart->TxCpltCallback(huart);
-#else
-  /*Call legacy weak Tx complete callback*/
-  HAL_UART_TxCpltCallback(huart);
-#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
-
-  return HAL_OK;
-}
-
-/**
-  * @brief  Receives an amount of data in non blocking mode
-  * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
-  *                the configuration information for the specified UART module.
-  * @retval HAL status
-  */
-static HAL_StatusTypeDef UART_Receive_IT(UART_HandleTypeDef *huart)
-{
-  uint8_t  *pdata8bits;
-  uint16_t *pdata16bits;
-
-  /* Check that a Rx process is ongoing */
-  if (huart->RxState == HAL_UART_STATE_BUSY_RX)
-  {
-    if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE))
-    {
-      pdata8bits  = NULL;
-      pdata16bits = (uint16_t *) huart->pRxBuffPtr;
-      *pdata16bits = (uint16_t)(huart->Instance->DR & (uint16_t)0x01FF);
-      huart->pRxBuffPtr += 2U;
-    }
-    else
-    {
-      pdata8bits = (uint8_t *) huart->pRxBuffPtr;
-      pdata16bits  = NULL;
-
-      if ((huart->Init.WordLength == UART_WORDLENGTH_9B) || ((huart->Init.WordLength == UART_WORDLENGTH_8B) && (huart->Init.Parity == UART_PARITY_NONE)))
-      {
-        *pdata8bits = (uint8_t)(huart->Instance->DR & (uint8_t)0x00FF);
-      }
-      else
-      {
-        *pdata8bits = (uint8_t)(huart->Instance->DR & (uint8_t)0x007F);
-      }
-      huart->pRxBuffPtr += 1U;
-    }
-
-    if (--huart->RxXferCount == 0U)
-    {
-      /* Disable the UART Data Register not empty Interrupt */
-      __HAL_UART_DISABLE_IT(huart, UART_IT_RXNE);
-
-      /* Disable the UART Parity Error Interrupt */
-      __HAL_UART_DISABLE_IT(huart, UART_IT_PE);
-
-      /* Disable the UART Error Interrupt: (Frame error, noise error, overrun error) */
-      __HAL_UART_DISABLE_IT(huart, UART_IT_ERR);
-
-      /* Rx process is completed, restore huart->RxState to Ready */
-      huart->RxState = HAL_UART_STATE_READY;
-
-      /* Check current reception Mode :
-         If Reception till IDLE event has been selected : */
-      if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
-      {
-        /* Set reception type to Standard */
-        huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
-
-        /* Disable IDLE interrupt */
-        ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_IDLEIE);
-
-        /* Check if IDLE flag is set */
-        if (__HAL_UART_GET_FLAG(huart, UART_FLAG_IDLE))
-        {
-          /* Clear IDLE flag in ISR */
-          __HAL_UART_CLEAR_IDLEFLAG(huart);
-        }
-
-#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
-        /*Call registered Rx Event callback*/
-        huart->RxEventCallback(huart, huart->RxXferSize);
-#else
-        /*Call legacy weak Rx Event callback*/
-        HAL_UARTEx_RxEventCallback(huart, huart->RxXferSize);
-#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
-      }
-      else
-      {
-        /* Standard reception API called */
-#if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
-        /*Call registered Rx complete callback*/
-        huart->RxCpltCallback(huart);
-#else
-        /*Call legacy weak Rx complete callback*/
-        HAL_UART_RxCpltCallback(huart);
-#endif /* USE_HAL_UART_REGISTER_CALLBACKS */
-      }
-
-      return HAL_OK;
-    }
-    return HAL_OK;
-  }
-  else
-  {
-    return HAL_BUSY;
-  }
-}
-
-/**
-  * @brief  Configures the UART peripheral.
-  * @param  huart  Pointer to a UART_HandleTypeDef structure that contains
-  *                the configuration information for the specified UART module.
-  * @retval None
-  */
-static void UART_SetConfig(UART_HandleTypeDef *huart)
-{
-  uint32_t tmpreg;
-  uint32_t pclk;
-
-  /* Check the parameters */
-  assert_param(IS_UART_BAUDRATE(huart->Init.BaudRate));
-  assert_param(IS_UART_STOPBITS(huart->Init.StopBits));
-  assert_param(IS_UART_PARITY(huart->Init.Parity));
-  assert_param(IS_UART_MODE(huart->Init.Mode));
-
-  /*-------------------------- USART CR2 Configuration -----------------------*/
-  /* Configure the UART Stop Bits: Set STOP[13:12] bits
-     according to huart->Init.StopBits value */
-  MODIFY_REG(huart->Instance->CR2, USART_CR2_STOP, huart->Init.StopBits);
-
-  /*-------------------------- USART CR1 Configuration -----------------------*/
-  /* Configure the UART Word Length, Parity and mode:
-     Set the M bits according to huart->Init.WordLength value
-     Set PCE and PS bits according to huart->Init.Parity value
-     Set TE and RE bits according to huart->Init.Mode value
-     Set OVER8 bit according to huart->Init.OverSampling value */
-
-  tmpreg = (uint32_t)huart->Init.WordLength | huart->Init.Parity | huart->Init.Mode | huart->Init.OverSampling;
-  MODIFY_REG(huart->Instance->CR1,
-             (uint32_t)(USART_CR1_M | USART_CR1_PCE | USART_CR1_PS | USART_CR1_TE | USART_CR1_RE | USART_CR1_OVER8),
-             tmpreg);
-
-  /*-------------------------- USART CR3 Configuration -----------------------*/
-  /* Configure the UART HFC: Set CTSE and RTSE bits according to huart->Init.HwFlowCtl value */
-  MODIFY_REG(huart->Instance->CR3, (USART_CR3_RTSE | USART_CR3_CTSE), huart->Init.HwFlowCtl);
-
-
-#if defined(USART6) && defined(UART9) && defined(UART10)
-    if ((huart->Instance == USART1) || (huart->Instance == USART6) || (huart->Instance == UART9) || (huart->Instance == UART10))
-    {
-      pclk = HAL_RCC_GetPCLK2Freq();
-    }
-#elif defined(USART6)
-    if ((huart->Instance == USART1) || (huart->Instance == USART6))
-    {
-      pclk = HAL_RCC_GetPCLK2Freq();
-    }
-#else
-    if (huart->Instance == USART1)
-    {
-      pclk = HAL_RCC_GetPCLK2Freq();
-    }
-#endif /* USART6 */
-    else
-    {
-      pclk = HAL_RCC_GetPCLK1Freq();
-    }
-  /*-------------------------- USART BRR Configuration ---------------------*/
-  if (huart->Init.OverSampling == UART_OVERSAMPLING_8)
-  {
-    huart->Instance->BRR = UART_BRR_SAMPLING8(pclk, huart->Init.BaudRate);
-  }
-  else
-  {
-    huart->Instance->BRR = UART_BRR_SAMPLING16(pclk, huart->Init.BaudRate);
-  }
-}
-
-/**
-  * @}
-  */
-
-#endif /* HAL_UART_MODULE_ENABLED */
-/**
-  * @}
-  */
-
-/**
-  * @}
-  */
-
-/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

+ 78 - 45
stm32workspace/dosimeter-fw/dosimeter-fw.ioc

@@ -18,6 +18,18 @@ ADC2.SamplingTime-5\#ChannelRegularConversion=ADC_SAMPLETIME_15CYCLES
 DAC.DAC_OutputBuffer=DAC_OUTPUTBUFFER_DISABLE
 DAC.DAC_OutputBuffer2=DAC_OUTPUTBUFFER_DISABLE
 DAC.IPParameters=DAC_OutputBuffer2,DAC_OutputBuffer
+Dma.ADC1.0.Direction=DMA_PERIPH_TO_MEMORY
+Dma.ADC1.0.FIFOMode=DMA_FIFOMODE_DISABLE
+Dma.ADC1.0.Instance=DMA2_Stream0
+Dma.ADC1.0.MemDataAlignment=DMA_MDATAALIGN_WORD
+Dma.ADC1.0.MemInc=DMA_MINC_ENABLE
+Dma.ADC1.0.Mode=DMA_NORMAL
+Dma.ADC1.0.PeriphDataAlignment=DMA_PDATAALIGN_WORD
+Dma.ADC1.0.PeriphInc=DMA_PINC_DISABLE
+Dma.ADC1.0.Priority=DMA_PRIORITY_LOW
+Dma.ADC1.0.RequestParameters=Instance,Direction,PeriphInc,MemInc,PeriphDataAlignment,MemDataAlignment,Mode,Priority,FIFOMode
+Dma.Request0=ADC1
+Dma.RequestsNb=1
 File.Version=6
 GPIO.groupedBy=Group By Peripherals
 I2C1.ClockSpeed=50000
@@ -26,20 +38,22 @@ KeepUserPlacement=false
 Mcu.Family=STM32F4
 Mcu.IP0=ADC1
 Mcu.IP1=ADC2
-Mcu.IP10=TIM2
-Mcu.IP11=TIM3
-Mcu.IP12=USART1
-Mcu.IP13=USB_DEVICE
-Mcu.IP14=USB_OTG_FS
-Mcu.IP2=DAC
-Mcu.IP3=I2C1
-Mcu.IP4=NVIC
-Mcu.IP5=RCC
-Mcu.IP6=RTC
-Mcu.IP7=SPI1
-Mcu.IP8=SPI2
-Mcu.IP9=SYS
-Mcu.IPNb=15
+Mcu.IP10=SPI2
+Mcu.IP11=SYS
+Mcu.IP12=TIM2
+Mcu.IP13=TIM3
+Mcu.IP14=TIM4
+Mcu.IP15=USB_DEVICE
+Mcu.IP16=USB_OTG_FS
+Mcu.IP2=CRC
+Mcu.IP3=DAC
+Mcu.IP4=DMA
+Mcu.IP5=I2C1
+Mcu.IP6=NVIC
+Mcu.IP7=RCC
+Mcu.IP8=RTC
+Mcu.IP9=SPI1
+Mcu.IPNb=17
 Mcu.Name=STM32F446R(C-E)Tx
 Mcu.Package=LQFP64
 Mcu.Pin0=PC13
@@ -61,39 +75,41 @@ Mcu.Pin22=PC7
 Mcu.Pin23=PC8
 Mcu.Pin24=PC9
 Mcu.Pin25=PA8
-Mcu.Pin26=PA9
-Mcu.Pin27=PA10
-Mcu.Pin28=PA11
-Mcu.Pin29=PA12
+Mcu.Pin26=PA10
+Mcu.Pin27=PA11
+Mcu.Pin28=PA12
+Mcu.Pin29=PA13
 Mcu.Pin3=PH0-OSC_IN
-Mcu.Pin30=PA13
-Mcu.Pin31=PA14
-Mcu.Pin32=PA15
-Mcu.Pin33=PC10
-Mcu.Pin34=PC11
-Mcu.Pin35=PC12
-Mcu.Pin36=PD2
-Mcu.Pin37=PB3
-Mcu.Pin38=PB4
-Mcu.Pin39=PB5
+Mcu.Pin30=PA14
+Mcu.Pin31=PA15
+Mcu.Pin32=PC10
+Mcu.Pin33=PC11
+Mcu.Pin34=PC12
+Mcu.Pin35=PD2
+Mcu.Pin36=PB3
+Mcu.Pin37=PB4
+Mcu.Pin38=PB5
+Mcu.Pin39=PB6
 Mcu.Pin4=PH1-OSC_OUT
-Mcu.Pin40=PB6
-Mcu.Pin41=PB7
-Mcu.Pin42=PB8
-Mcu.Pin43=PB9
-Mcu.Pin44=VP_ADC1_Vref_Input
+Mcu.Pin40=PB7
+Mcu.Pin41=PB8
+Mcu.Pin42=PB9
+Mcu.Pin43=VP_ADC1_Vref_Input
+Mcu.Pin44=VP_CRC_VS_CRC
 Mcu.Pin45=VP_RTC_VS_RTC_Activate
 Mcu.Pin46=VP_RTC_VS_RTC_Calendar
 Mcu.Pin47=VP_SYS_VS_Systick
 Mcu.Pin48=VP_TIM2_VS_ControllerModeClock
 Mcu.Pin49=VP_TIM3_VS_ClockSourceINT
 Mcu.Pin5=PC0
-Mcu.Pin50=VP_USB_DEVICE_VS_USB_DEVICE_CDC_FS
+Mcu.Pin50=VP_TIM4_VS_ClockSourceINT
+Mcu.Pin51=VP_TIM4_VS_OPM
+Mcu.Pin52=VP_USB_DEVICE_VS_USB_DEVICE_CDC_FS
 Mcu.Pin6=PC1
 Mcu.Pin7=PC2
 Mcu.Pin8=PC3
 Mcu.Pin9=PA0-WKUP
-Mcu.PinsNb=51
+Mcu.PinsNb=53
 Mcu.ThirdPartyNb=0
 Mcu.UserConstants=
 Mcu.UserName=STM32F446RCTx
@@ -101,6 +117,7 @@ MxCube.Version=6.3.0
 MxDb.Version=DB.6.0.30
 NVIC.ADC_IRQn=true\:0\:0\:false\:false\:true\:true\:true
 NVIC.BusFault_IRQn=true\:0\:0\:false\:false\:true\:false\:false
+NVIC.DMA2_Stream0_IRQn=true\:0\:0\:false\:false\:true\:false\:true
 NVIC.DebugMonitor_IRQn=true\:0\:0\:false\:false\:true\:false\:false
 NVIC.EXTI1_IRQn=true\:0\:0\:false\:false\:true\:true\:true
 NVIC.EXTI9_5_IRQn=true\:0\:0\:false\:false\:true\:true\:true
@@ -114,13 +131,15 @@ NVIC.PriorityGroup=NVIC_PRIORITYGROUP_4
 NVIC.SVCall_IRQn=true\:0\:0\:false\:false\:true\:false\:false
 NVIC.SysTick_IRQn=true\:15\:0\:false\:false\:true\:false\:true
 NVIC.TIM3_IRQn=true\:0\:0\:false\:false\:true\:true\:true
+NVIC.TIM4_IRQn=true\:0\:0\:false\:false\:true\:true\:true
+NVIC.TIM6_DAC_IRQn=true\:0\:0\:false\:false\:true\:true\:true
 NVIC.UsageFault_IRQn=true\:0\:0\:false\:false\:true\:false\:false
 PA0-WKUP.Locked=true
 PA0-WKUP.Signal=S_TIM2_CH1_ETR
 PA1.Locked=true
 PA1.Signal=GPXTI1
-PA10.Mode=Asynchronous
-PA10.Signal=USART1_RX
+PA10.Locked=true
+PA10.Signal=GPIO_Output
 PA11.Mode=Device_Only
 PA11.Signal=USB_OTG_FS_DM
 PA12.Mode=Device_Only
@@ -139,8 +158,6 @@ PA8.GPIO_ModeDefaultEXTI=GPIO_MODE_IT_FALLING
 PA8.GPIO_PuPd=GPIO_PULLUP
 PA8.Locked=true
 PA8.Signal=GPXTI8
-PA9.Mode=Asynchronous
-PA9.Signal=USART1_TX
 PB1.Locked=true
 PB1.Signal=GPIO_Output
 PB10.Locked=true
@@ -176,7 +193,9 @@ PB8.Signal=I2C1_SCL
 PB9.Locked=true
 PB9.Mode=I2C
 PB9.Signal=I2C1_SDA
+PC0.GPIOParameters=PinState
 PC0.Locked=true
+PC0.PinState=GPIO_PIN_SET
 PC0.Signal=GPIO_Output
 PC1.Locked=true
 PC1.Signal=GPIO_Output
@@ -251,7 +270,7 @@ ProjectManager.StackSize=0x400
 ProjectManager.TargetToolchain=STM32CubeIDE
 ProjectManager.ToolChainLocation=
 ProjectManager.UnderRoot=true
-ProjectManager.functionlistsort=1-SystemClock_Config-RCC-false-HAL-false,2-MX_GPIO_Init-GPIO-false-HAL-true,3-MX_ADC1_Init-ADC1-false-HAL-true,4-MX_ADC2_Init-ADC2-false-HAL-true,5-MX_DAC_Init-DAC-false-HAL-true,6-MX_I2C1_Init-I2C1-false-HAL-true,7-MX_RTC_Init-RTC-false-HAL-true,8-MX_SPI1_Init-SPI1-false-HAL-true,9-MX_SPI2_Init-SPI2-false-HAL-true,10-MX_USART1_UART_Init-USART1-false-HAL-true,11-MX_USB_DEVICE_Init-USB_DEVICE-false-HAL-false,12-MX_TIM2_Init-TIM2-false-HAL-true,13-MX_TIM3_Init-TIM3-false-HAL-true
+ProjectManager.functionlistsort=1-SystemClock_Config-RCC-false-HAL-false,2-MX_GPIO_Init-GPIO-false-HAL-true,3-MX_DMA_Init-DMA-false-HAL-true,4-MX_ADC1_Init-ADC1-false-HAL-true,5-MX_ADC2_Init-ADC2-false-HAL-true,6-MX_DAC_Init-DAC-false-HAL-true,7-MX_I2C1_Init-I2C1-false-HAL-true,8-MX_RTC_Init-RTC-false-HAL-true,9-MX_SPI1_Init-SPI1-false-HAL-true,10-MX_SPI2_Init-SPI2-false-HAL-true,11-MX_USB_DEVICE_Init-USB_DEVICE-false-HAL-false,12-MX_TIM2_Init-TIM2-false-HAL-true,13-MX_TIM3_Init-TIM3-false-HAL-true,14-MX_CRC_Init-CRC-false-HAL-true,15-MX_TIM4_Init-TIM4-false-HAL-true
 RCC.AHBFreq_Value=160000000
 RCC.APB1CLKDivider=RCC_HCLK_DIV4
 RCC.APB1Freq_Value=40000000
@@ -331,13 +350,21 @@ SPI2.Direction=SPI_DIRECTION_2LINES
 SPI2.IPParameters=VirtualType,Mode,Direction,CalculateBaudRate,BaudRatePrescaler
 SPI2.Mode=SPI_MODE_MASTER
 SPI2.VirtualType=VM_MASTER
+TIM2.IPParameters=Period,TIM_MasterOutputTrigger
+TIM2.Period=100
+TIM2.TIM_MasterOutputTrigger=TIM_TRGO_UPDATE
 TIM3.AutoReloadPreload=TIM_AUTORELOAD_PRELOAD_ENABLE
 TIM3.CounterMode=TIM_COUNTERMODE_DOWN
-TIM3.IPParameters=Prescaler,Period,AutoReloadPreload,CounterMode
-TIM3.Period=8000
-TIM3.Prescaler=1000
-USART1.IPParameters=VirtualMode
-USART1.VirtualMode=VM_ASYNC
+TIM3.IPParameters=Prescaler,Period,AutoReloadPreload,CounterMode,TIM_MasterOutputTrigger
+TIM3.Period=1000
+TIM3.Prescaler=8000
+TIM3.TIM_MasterOutputTrigger=TIM_TRGO_UPDATE
+TIM4.AutoReloadPreload=TIM_AUTORELOAD_PRELOAD_ENABLE
+TIM4.CounterMode=TIM_COUNTERMODE_DOWN
+TIM4.IPParameters=Prescaler,Period,CounterMode,TIM_MasterOutputTrigger,AutoReloadPreload
+TIM4.Period=1000
+TIM4.Prescaler=4000
+TIM4.TIM_MasterOutputTrigger=TIM_TRGO_UPDATE
 USB_DEVICE.CLASS_NAME_FS=CDC
 USB_DEVICE.IPParameters=VirtualMode-CDC_FS,VirtualModeFS,CLASS_NAME_FS
 USB_DEVICE.VirtualMode-CDC_FS=Cdc
@@ -346,6 +373,8 @@ USB_OTG_FS.IPParameters=VirtualMode
 USB_OTG_FS.VirtualMode=Device_Only
 VP_ADC1_Vref_Input.Mode=IN-Vrefint
 VP_ADC1_Vref_Input.Signal=ADC1_Vref_Input
+VP_CRC_VS_CRC.Mode=CRC_Activate
+VP_CRC_VS_CRC.Signal=CRC_VS_CRC
 VP_RTC_VS_RTC_Activate.Mode=RTC_Enabled
 VP_RTC_VS_RTC_Activate.Signal=RTC_VS_RTC_Activate
 VP_RTC_VS_RTC_Calendar.Mode=RTC_Calendar
@@ -356,6 +385,10 @@ VP_TIM2_VS_ControllerModeClock.Mode=Clock Mode
 VP_TIM2_VS_ControllerModeClock.Signal=TIM2_VS_ControllerModeClock
 VP_TIM3_VS_ClockSourceINT.Mode=Internal
 VP_TIM3_VS_ClockSourceINT.Signal=TIM3_VS_ClockSourceINT
+VP_TIM4_VS_ClockSourceINT.Mode=Internal
+VP_TIM4_VS_ClockSourceINT.Signal=TIM4_VS_ClockSourceINT
+VP_TIM4_VS_OPM.Mode=OPM_bit
+VP_TIM4_VS_OPM.Signal=TIM4_VS_OPM
 VP_USB_DEVICE_VS_USB_DEVICE_CDC_FS.Mode=CDC_FS
 VP_USB_DEVICE_VS_USB_DEVICE_CDC_FS.Signal=USB_DEVICE_VS_USB_DEVICE_CDC_FS
 board=custom

Některé soubory nejsou zobrazeny, neboť je v těchto rozdílových datech změněno mnoho souborů